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Abstract

When analytes containing cationic components, such as proteins, are separated in fused silica capillaries or micro-chips, they adsorb strongly
to the negatively charged channel walls. Broadened and highly asymmetric peaks in the detector signal is symptomatic of the presence of such
wall interactions. Band broadening is caused by the introduction of shear into the electroosmotic flow which leads to Taylor dispersion. The
shearing flow in turn is caused by axial variations in zeta-potential due to adsorbed analytes. In this paper, numerical solutions of the coupled
electro-hydrodynamic equations for fluid flow and the advection-diffusion equation for analyte concentration are presented in the limit of thin
Debye layers. The simulations reproduce many of the qualitative effects of wall adsorption familiar from observation. Further, the simulation
results are compared, and found to agree very well (to within a percent for characteristic values of the parameters) with a recently developed
asymptotic theory.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction broadening in CZE due to adsorption of analytes to capil-
lary walls. In this paper, we assume a circular cross-section
The tendency of proteins and peptides to adsorb to thefor the micro-channel, however the qualitative effects are
silica walls of micro-channels is a serious impediment to equally valid for channels of other cross-sectional shapes
achieving acceptable resolution in separatifirsh] using such as those on microfluidic chips.
capillary zone electrophoresis (CZE) either in cylindrical ~ An obvious deleterious effect of analyte adsorption at
capillaries or in microchannels etched on chips. A large ef- capillary walls is that some of the sample is lost from the
fort has been invested in designing wall coatings and buffer fluid stream. The adsorbed analyte may be difficult to wash
additives that will reduce or eliminate analyte-wall interac- off and if it is a protein, it may denature on the capillary sur-
tions[6]. Such treatments are effective in many cases thoughface perhaps ruining the capillary (or the chip). Analyte ad-
no universal solution has been found to date covering all sorption leads to reduced signal levels, strongly assymetric
relevant applications. The remedies often introduce further (tailed) peaks and reduced resolution due to the following
difficulties such as suppression of the electroosmotic flow sequence of events which has only recently been fully under-
(EOF), issues of stability and reproducibility of the coatings stood[7—9]. When a charged species adsorbs to the capillary
and possible contamination of the samfie The subject of  wall it alters the surface charge on the wall and therefore the
this paper is the analysis and quantitative prediction of band zeta-potential. Thus, as the analyte plug traverses the capil-
lary it causes the zeta potential to vary in the axial direction
and also to vary in time. The well known formula for elec-
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applied electric field and is the local¢ potential) would where Pe = ueao/D (the Peclet number)D being the
then imply that different cross-sections of the capillary will molecular diffusivity; uep is the electrophoretic speed in
have different fluid fluxes, a scenario incompatible with the units of ue. For definiteness, we consider only a single
fact that liquids are incompressible. The apparent paradoxspecies and setep, = 0, since the only effect ofiep is a
is resolved through the appearance of induced pressureuniform translation of the peak relative to the mean flow.
gradients in the axial direction that enforce the incompress- The Reynolds number iBe (wherev is the kinematic vis-
ibility condition, even though no external pressure differ- cosity of the fluid)= (ague)/v. In microfluidic applications
ence may have been applied across the capillary. The actuatypically Re ~ 0.01-1. For small Reynolds number, the
electroosmotic flow is intermediate in character between electroosmotic flow is governed by the Stokes form of the
electroosmotic flow in a capillary with uniforrrpotential hydrodynamic equations:
and a pressure driven flow. Since pressure driven flows 2
have a parabolic rather than a uniform profile, the altered ~Vp+Vu=0, (3)
electroosmotic flow is no longer uniform over the capillary v ., — o (4)
cross-section. The resulting enhanced “Taylor dispersion” or
“shear induced dispersiorf10,11] is what causes the band with the coupling to the electric field& provided by the
broadening and peak tailing observed in the CZE signal.  Helmholtz-Smoluchowski slip boundary conditi¢i?]

In this paper, the governing equations describing elec-
troosmotic flow and analyte dispersion in a cylindrical cap- “(1% D = ¢, 0. (5)

illary in the presence of wall interactions are formulated |f analytes with net molecular charge are adsorbed on the
(Section 2 and solved numericallySection 3 in the limit surface, the density of surface charges and hence the surface

of infinitely thin Debye layers and Stokes flow. The numer- ,_yotential is altered. We take this effect into account through
ical solution is comparedSection 4 with the result of a  {he relation

recently developed asymptotic theory (Appendix A). Con-
clusions are summarized Bection 5 (x, ) = 1L—as(x, 1), (6)

whereq is a dimensionless parameter. We shall regaess

a given constant that may either be determined from theory
(a linearization of Gouy—Chapman theory, for instance) or
by experiment. The interaction of the analyte with the wall
is modeled by a Langmuir second order kinetic [@\3]

2. Mathematical formulation

We consider CZE in a cylindrical capillary of lengfly
and radiusag. In the absence of analyte adsorption and in
the limit of thin Debye layers, the electroosmotic flow speed ds

in such a capillary is (in cgs units) o Kacw(x, Dlsmax— s(x, 0] = kas(x, 1), (7)
o — €foE Q) wherek, andkg are (dimensionless) rates of adsorption and
© A desorption, respectively, ang,(x, 1) = ¢(1, x, 1) is the ana-

lyte concentration evaluated at the wall. The term wighx
expresses the fact that there are a finite number of charged
sites at the wall where analyte can be adsorbed and hence the
wall has a saturation point. The dimensionless parameters
per unit volume) and adsorbed to the walf, 7) (moles characterizing the intera_ction.with the wall can be readily re-
per unit area), the-potentialZ(x, 7), the fluid flow velocity I~ated to the corresponding dimensional parametgig; =

ii(7, %, 7) and the fluid pressurg(7, %, 7) which depend on  max/(@0¢max), ka = (Cmaxao/ue)ka, ka = (ao/ue)kd and

the distance from the axis of the capillafy,distance from & = ~(@0cmax/¢0)(3¢/d5). SinceEq. (7) must match the

the inlet, X, and the time;. For each such variablg, we diffusive flux of c(r, x, 7) at the wall

wheree is the dielectric constant of the fluid;, the applied
electric field,u the viscosity andyg is the wallz-potential (in
the absence of wall interactions). The variables of interest are
the concentration of the sample in the fluid;, X, 1) (moles

will define a dimensionless counterpaft= f/f« Where ds _1(dc 8
[« is a characteristic value for the variabfe We choose o (5)r21~ (8)
the following characteristic values, = r, = ao, t, =
aop/ue, Usx = Ue, Ly = {0, C+ = Cmax, Px = Mue/ag and
S¢ = agCmax- Here,~ cmax is the maximum value of at 3. Numerical method
the initial time. In the following we will only work with
the dimensionless variablesand will seldom refer to the The characteristic length of a CZE capillarfg ~
dimensional counterparts again. 10-100cm but a characteristic radiusais ~ 10—100um.
The evolution ofc is governed by an advection-diffusion  Since the computational grid size is determined by the
equation: smallest relevant length scale in the problem (in this case
ac the grid size must be chosen to achieve proper resolution

. “1g2
o TV L@t uephic] = Pe V7, (2) in the r-direction) the simulation of the above problem
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is numerically intensive (or “stiff”) for realistic values of
L = Lo/ag = 10° to 1CP.

89

according toEg. (7) Thus, the problem reduces to solving
a pair of coupled partial differential equations fay, x, 1)

The size of the computational problem can be reduced ands(x, ) with given initial and boundary conditions. For

by exploiting an exact solution for electroosmotic flow in
a cylindrical capillary due to Anderson and Idd¥]. This
solution assumes

(1) Stokes flow Re = 0).

(2) Helmholtz—Smoluchowski slip boundary conditions for
infinitely thin Debye layerskEq. (5)

(3) Axial symmetry, so that the-potential is a function of
x andt only, ¢ = Z(x, 1).

Under those assumptions, the velocity figle= ux + Fv
may be expressed in terms of the stream function

13y

= ©)
Loy
== (10)

where the stream function is given by a series expansion

2 o
_r c 2mmx
V= 5 (€) + Zlnglam(r) cos( )
+23 " a5 () sin <2’"”x) (11)
m=1
where
as, _ay, _ rlolam)li(amr) — r’lo(emr) I (em)
& S amlZ(am) + 2lo(am)I1(em) — aml§(om)
(12)
and
e E/L 2mmx
Lo = ) Z(x, 1) cos 7 dx (13)
ps _ E/L ( t)sin<2m’”> d (14)
o = L Z(x, 2 X

are the cosine and sine transform of th&unction, ¢(x, 1),

at the time instant for which the flow is being determined,
a, = 2mm/L, and(-) indicates the average over the length
of the capillary:

1 L
<’5>=z/0 ¢dr.

In Eq. (12) I, denotes the modified Bessel function of in-
teger ordet:.

Thus, only the advection-diffusion probleEy. (2) and
Eq. (7)with boundary conditiorEq. (8) needs to be solved
numerically. The velocity fielek appearing irEqg. (2)is ob-
tained at each time step from the Anderson and Idol ana-
lytical result presented above. The latter dependg(ory)
which in turn is related ta(x, ) throughEq. (6) The ad-
sorbed concentration(x, ¢) is obtained by evolving(x, 1)

(15)

initial condition we will choose
c(r, x,0) = co(x) (16)

s(x,00=0 (17)

where c¢g will be some specified function centered xat
and having some characteristic widtfh The parametersgy
and op are chosen so that the initial concentration profile
is localized near the inlet but with negligible concentration
at x = 0. Physically this corresponds to a short time after
injection of the sample plug.

For boundary conditions in the-direction we shall use
‘periodic’ boundary conditionsg(r, 0, ¢) = ¢(r, L, t). This
is an artifice that is commonly used when (a) the true in-
let and exit boundary conditions are not known (b) the sys-
tem is not very sensitive to conditions at these boundaries.
Indeed, mathematically the ‘periodic’ boundary conditions
correspond to replacing the problem of a single analyte plug
travelling through a single capillary of finite length by an
infinite array of such capillaries joined end to end each con-
taining an analyte plug. However, if during the time period
under study, the concentration remains essentially zero at
the two ends, then the result of computing with the periodic
boundary condition differs only very slightly from a calcu-
lation that uses more ‘natural’ boundary conditions such as
¢(r,0,1) = 0 andc(r, L, 1) = 0. The periodic boundary con-
dition has the advantage of allowing a Fourier decomposition
of the concentration field which permits the use of highly
accurate spectral methods. One must be careful though in
ensuring that the concentration peak is kept well clear of
either boundary during the course of the simulation, since
otherwise one would obtain the unrealistic situation of the
sample re-entering at the inlet end upon exiting the opposite
end of the capillary. In the simulation the initial concentra-
tion peak is centered sufficiently far from the inlet end so
that the concentration at the inlet is negligible, and, the sim-
ulation is stopped before the sample gets too close to the
outlet so that no significant concentration builds up at the
outlet during the time period represented in the simulation.

A finite volume approacfi5] is adopted for the numerical
solution ofEq. (2) This approach has the advantage that any
conservation laws that the continuum equations satisfy are
also satisfied exactly in the spatially discretized system. This
is important in order to avoid a “spurious decay” of the peak
due to numerical effects. For exampleyg. (2)together with
boundary condition (8) and the periodic boundary condition
in x imply that

d L 1 L
— / dx/ 2zrre(r, x, Hdr + / 2ns(x,Hdx | =0
de | Jo 0 0

(18)

which express the fact that the the total number of molecules
(whether in solution or adsorbed to the wall) of the sample
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remains constant. In the absence of time discretization er-Table 1
rors a finite volume approach guarantees the validity of the Parameter Values for Simulation

corresponding discrete relation Parameter L Re Pe « ka  kd Smax
Value 1000 0 100  Asmax 0.1 0.0005  0.01

dg Z Z Zﬂrij’kArkij + Z ZﬂSjAXj =0 (19)
4 ik F variables,Lkasmax ~ 1. Clearly, forkq, there is no lower
. ) ) . . limit on what can be considered as an ‘interesting regime’.
whereAr, andAx; are grid spacings in the radial and axial |hqeeqd, for relatively large proteingg is essentially zero
directions and the indiceg™and ‘k’ label the grid points. [6]. However, an upper bound on ‘reasonable valueskgor
For simplicity a_lll spatial derivati\_/es are apprpximated by may be estimated. To do so, note thatdfis large,s is es-
second-order finite differences. Time integration is perfor- sentially zero ahead and behind the plug and at the plug,

med using the fourth-order Runge—Kutta scheme with time ¢ 44sorption and desorption processes must be practically

increments chosen to fulfil the CFL (Courant-Friedrichs- equilibrium. Thus, equating the right hand side of (7) to
Levy) condition. The simulations were performed with 2521 ' \ve have

points in the axial direction and 20 points in the radial di- r
rection. A finer grid led to no visible change in the results § ~ s—ml ~ <_a> Sm (20)
which suggests a converged calculation. 1+ (kd/ka)ew kd

sincecy =~ 1. Thus, ifkg > ka, s < s, in Which case

the modification of the zeta-potential is unimportant. Thus

the parameter regime of interest to us, is<Okq >~ ka.

i i L ) The parameters for the numerical simulation, displayed in
The following estlmates (to within an ordgr of magmtude) Table 1 were chosen so as to be consistent with the above

may be made for typical CZE systems: capillary radigis- estimates for typical systems. Other parameter values do not

SO%m,anpil!ary _Ie_ngthLo ~ 995 "2] viscosity (watery ~ make a significant difference to the main qualitative results,
107° m4/s, diffusivity D ~ 10~ m*/s (for small to moder- and need not be reported here (see [@]).

ate sized molecules) and typical electroosmotic flow speed  rpq initial conditions chosen for the numerical simulation
ue ~ 10~3m/s. This allows us to make the following esti- weres(x, 0) = 0 (so thatz(x, 0) = 1) ande(r, x, 0) = co(x)

matesRe ~ 0.05 andPe ~ 50. The remaining _dimension- whereco(x) had the trapezoidal shape showrFig. 1 The
less parametery, k4, smax ande that characterize the wall asymptotic theory requires only initial values oandc to

interactions ar,e more difficult to estimate since to the.best be specified (henceforth, an overbar denotes average over
of the authors’ knowledge there appears to be no published - 1 e

. . . . _the cross-sectiort; = [; 2rcdr). The radial distribution of
data on these parameters for interactions of cationic proteins

with fused silica walls. If the source of the attraction to the ;slsr;higtiie:ﬁggrln?/t/jebfsqs.u(rﬁéléxmof Flpeongz d’f( F(()); tEe
wall is primarily electrostatic in origin, then it is reasonable ymp y L oY) =

) co(x). Note however that this implies a slight radial depen-
to suppose that saturations smax) corresponds to neutral- oo ot the concentration profile given b (A.1), so that
ization of the wall chargez(= 0). This requirest = 1/smax b 9 y (A2,

. L : the initial conditions for the simulation and the asymptotic
so we will choose the parametein this way. Experiments theory are not quite identical even though the concentration
by Towns and Regnidil6] show that the fraction of sam- y q 9

ple that is adsorbed varies within wide limits from zero to

essentially hundred percent (no signal recovered). However, * * *
the interesting parameter regime to study is the situation
where the fraction adsorbed 0.5. If the fraction adsorbed 10 1
is very much less than this, wall interactions are a relatively
weak effect and if it is much larger then no signal is likely
to be detected so that the calculation is irrelevant. In order
to determine thég, that would achieve this, let us for the
purpose of making a very rough estimate assume that the
sample consists of a homogeneous cylindrical plug of fixed ?
length o,.. Then, neglecting desorption and assuming that
the walls are far from saturation, we can write the following
equation for the time evolution of the concentration of our
sample in the cylinderta3o..(d¢/df) = —(2magos)kaSmaxt- o ‘ 1 ‘
Therefore, after timeé ~ Lo/ue taken to traverse the capil- 0.0 25.0 50.0 75.0 100.0
lary, the remaining concentration may be estimated as distance from inlet/ capillary radius

cmax €XP[~2LokaSmax/ (aoue)]. FOr ¢/cmax ~ 0.5, we must Fig. 1. Initial analyte concentration profiley(x); symbols: asymptotic
have LokaSmax/(aoue) ~ 1 or in terms of dimensionless theory, line: numerical simulation.

4. Results

0.6 ]

lized concentration

0.4 .

norma
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Fig. 3. Same a§ig. 2 but showing only the concentration profile at the
Fig. 2. Comparison of asymptotic theory (symbols) with numerical simula- second downstream station on a magnified scale.
tion (lines) of the cross-sectionally averaged analyte concentration (lower
curves) andz-potential (upper curves) at two time instants. The initial

concentration is shown ifig. 1 . . . .
centerline. Therefore wall adsorption is more effective at re-

moving material from the slab behind the centroid, which
averaged over the cross-section are the same. However thevould cause an assymetric shape in the profile. Desorption
difference represents a fast decaying transient and as the dedoes not play a significant role in the peak asymmetry as
tailed comparisons presented in the remainder of this sec-the effect persists even fag = 0 [9].
tion will show, the slight mismatch in initial conditions does As expected, the-potential is seen to be reduced be-
not have any significant effect on the quantities of interest. hind the analyte peak. However, with passage of time, the
If desired this mismatch could be eliminated by substituting ¢-potential at a fixed position undergoes a gradual recov-
¢ = co in (A.1) and using the resulting functiaftr, x, r) as ery. This is due to desorption from the capillary walls. For
the proper initial condition for the numerical simulation. a short section near the inlét= 1 because in the simula-

Fig. 2 shows the distribution of and ¢ at the instant  tion the sample is introduced at= 50 rather than at = 0

when the concentration peak arrives at a hypothetical detec-in order to ensure that the concentration at the inlet remains
tor placed at a distance from the inlet. The figure shows essentially zero throughout the simulation. For hodnd¢
two sets of results forg = 450 andxg = 900 respectively.  the simulation is seen to be in excellent agreement with the
These graphs refer to the spatial distributiorc @&nd¢ for theoretical calculation using the 1Bg. (A.3) presented in
a single analyte species at two different instants of time and Appendix A.Fig. 3shows an amplified view of the second
should not be confused with multiple peaks from a multi- peak (at detectoxy = 900). The difference between the
component sample. It is seen that as the sample moves dowrasymptotic theory and the exact solution is seen to be small.
the capillary, the peak height decreases, the peak width in-Note that inFig. 3 the concentration does not drop to zero
creases and the peak shape becomes markedly asymmetriafter passage of the peak, but there is a “plateau” extending
The peak shapes have a striking similarity with observed many diameters behind the peak. Such “lack of return to the
CZE signals in an uncoated capillary for cationic proteins baseline” is well known in the presence of wall interactions.
(see e.g. Fig. 8 ofL6] and Fig. 10 off17]; in making the Itis usually attributed to irreversible adsorption of analyte to
comparison one should keep in mind that in the detector the detection window, however the presence of this plateau
signals the horizontal axis represents time of arrival at a in the concentration profile could also be a contributing fac-
fixed detector location so that the sharp edge appears firsttor. This long plateau is caused by the cumulative effect of
and then the gradually decaying tail). The following ratio- the analyte desorbing from the wall long after the main peak
nalization of the asymmetric peak seems plausible: Taylor has passed.
dispersion by itself is known, in the long time limit, to lead Fig. 4shows the arrival time as a function of distance from
to a Gaussian profile of the concentration. Thus, a thin slabthe inlet for the sample peak. Such ‘elution time delays’
of fluid either ahead or behind the centroid of the distribu- due to protein adsorption and its underlying causes are now
tion would contain the same amount of analyte provided the well understood7,16]. Even though on the basis of formal
distance from the centroid is the same in both cases. How-analysis we expect the asymptotic theory to be accurate only
ever, the slab behind the centroid has most of the materialafter a ‘transition length’ of the order of the Peclet number
distributed on the outer periphery whereas the slab ahead(100) times the capillary radius, it is seen that in practice, no
of the centroid would have most of the material near the significant error is made if it is used throughout the capillary.
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1200.0 ; ; ; ; found not to have a significant impact on the accuracy of
the solution at later times.

_ The computation reproduced many of the well known

P gualitative effects of wall interaction in CZE. Significant
peak broadening, peak tailing and reduction in peak intensity
was observed. Peak shapes consistent with observed shapes
in the presence of strong wall interactions were found. In
the presence of desorption, the main peak was found to be
followed by a very long low level ‘plateau’ due to the delayed

1000.0

800.0

600.0

arrival times

400.0 r 1 arrival of slowly desorbing analytes. This phenomenon too
is supported by practical observations.
200.0 | 1 Numerical simulation is a useful tool for the analytical
chemist as it provides the ability to calculate performance
0.0 - - - - parameters for microfluidic devices. For example, if a certain
0.0 200.0 400.0 600.0 800.0 1000.0

distance from inlet / capillary radius wall coating has been designed that reduced adsorption by a
known factor one could calculate what effect this will have
Fig. 4. Comparison of asymptotic theory (symbol) with simulation (solid o the plate count. If the change in the adsorption/desorption
line) for arrival time of concentration peak as a function of the distance L . . -
to the observation point from the inlet. The dashed line gives the elution coefficients with repeated_use is modeled Sl_“tably’ Fme C(_)UId
times in the absence of wall interactions. calculate how the resolution of the separation device might
degrade over time. The problem size for a direct numerical
simulation of the whole system is generally very large on
account of the small aspect ratio between the capillary ra-
5. Conclusion dius and length. The reduced set of one dimensional equa-
tions discussed here provides a much more efficient way of
The problem of the elution of a sample plug by elec- accomplishing such calculations with very little reduction in
troosmotic flow in the presence of wall interactions was the accuracy of the results.
numerically simulated using a set of characteristic param-
eters typical of the separation of cationic proteins in fused
silica capillaries. The adsorption of the sample to the wall Acknowledgements
and its subsequent desorption was modeled using Langmuir
second order kinetics. The adsorption of solute from the Thisresearch was conducted at the NASA Ames Research
fluid stream was assumed to changegfgotential in alin-  Center in the summer of 2002 during which one of us (S.G.)

ear fashion, which in turn affected the hydrodynamics. The was supported by the NASA-ASEE-SJSU Faculty Fellow-
Debye layer thickness was assumed very thin compared toship Program (NFFP).

the capillary radius so that the coupling between electrical

effects and hydrodynamics could be modeled using the

Helmholtz-Smoluchowski slip boundary conditions. The Appendix A. Asymptotic theory for sample
hydrodynamics itself was considered in the Stokes flow .yncentration

limit, which allowed the use of an exact analytical formula

due to Anderson and Idol for calculating the velocity field 1o principal results of the asymptotic theory presented
at each time instant. The partial differential equation for the [9] is summarized below in the special case where (a)

sample concentration was integrated using a finite volume g _; g (b) a single species interacts with the wall.
method using the velocity fields determined from Anderson Following the same notation as in the rest of the paper

and Idol's formula. _ o the sample concentration is given by
The numerical simulation was used to test the validity of a

recently developed asymptotic theory due to Gh{gjalhat crx, 1) = &(x, 1) + %Pe(l — 220,
reduces the solution of the problem to that of solving a pair of

coupled partial differential equations fogx, 1) ands(x, ) in

one space dimension. The theory is expected to be accuratel_he Zeta-
at distances from the inl&t>> agPewhereqg is the capillary
radius andPe is the Peclet number defined earlier. Naturally,
for the theory to be useful the total capillary lengkhy, must
satisfy Lo > agPe. The agreement between the computed j; — (¢) (A.2)
result and the asymptotic theory was found to be extremely

good. The fact that the theory is not expected to be very where(-) denotes average over the length of the capillary as
accurate over a short transition lengtPe > x > 0, was defined in (15). Thus; is “slaved” toc ands the dynamics

+ 5 Pe(2 — 6r2 + 3r*) (¢ — i)d,c. (A.1)

potential is related idoy Eqg. (6)and, if the flow
is driven purely by a potential drop (that is no pressure drop
is imposed), then



K. Shariff, S Ghosal / Analytica Chimica Acta 507 (2004) 87-93

of which evolve on a slow (compared to the molecular dif-
fusion time across the capillary in the radial direction) time
scale.

The slow dynamics is described by the following evolu-
tion equations

ac ac d ac
— + (u — = — | Deff— S A3
or Tt uep) 8x< e“ax)+ A3)
where
1 Pe _2
Deff = — + — (& — A4
eff Pe + 48(4‘ I/l) ) ( )
is an “effective” diffusivity and
os Peod s
=_—2— 4+ —— —u)— A.
S o 1o [(5 ) az] ’ (A-9)
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