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Abstract

When analytes containing cationic components, such as proteins, are separated in fused silica capillaries or micro-chips, they adsorb strongly
to the negatively charged channel walls. Broadened and highly asymmetric peaks in the detector signal is symptomatic of the presence of such
wall interactions. Band broadening is caused by the introduction of shear into the electroosmotic flow which leads to Taylor dispersion. The
shearing flow in turn is caused by axial variations in zeta-potential due to adsorbed analytes. In this paper, numerical solutions of the coupled
electro-hydrodynamic equations for fluid flow and the advection-diffusion equation for analyte concentration are presented in the limit of thin
Debye layers. The simulations reproduce many of the qualitative effects of wall adsorption familiar from observation. Further, the simulation
results are compared, and found to agree very well (to within a percent for characteristic values of the parameters) with a recently developed
asymptotic theory.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The tendency of proteins and peptides to adsorb to the
silica walls of micro-channels is a serious impediment to
achieving acceptable resolution in separations[1–5] using
capillary zone electrophoresis (CZE) either in cylindrical
capillaries or in microchannels etched on chips. A large ef-
fort has been invested in designing wall coatings and buffer
additives that will reduce or eliminate analyte-wall interac-
tions[6]. Such treatments are effective in many cases though
no universal solution has been found to date covering all
relevant applications. The remedies often introduce further
difficulties such as suppression of the electroosmotic flow
(EOF), issues of stability and reproducibility of the coatings
and possible contamination of the sample[6]. The subject of
this paper is the analysis and quantitative prediction of band

∗ Corresponding author. Tel.:+1-847-4675990; fax:+1-847-4913915.
E-mail address: s-ghosal@northwestern.edu (S. Ghosal).

broadening in CZE due to adsorption of analytes to capil-
lary walls. In this paper, we assume a circular cross-section
for the micro-channel, however the qualitative effects are
equally valid for channels of other cross-sectional shapes
such as those on microfluidic chips.

An obvious deleterious effect of analyte adsorption at
capillary walls is that some of the sample is lost from the
fluid stream. The adsorbed analyte may be difficult to wash
off and if it is a protein, it may denature on the capillary sur-
face perhaps ruining the capillary (or the chip). Analyte ad-
sorption leads to reduced signal levels, strongly assymetric
(tailed) peaks and reduced resolution due to the following
sequence of events which has only recently been fully under-
stood[7–9]. When a charged species adsorbs to the capillary
wall it alters the surface charge on the wall and therefore the
zeta-potential. Thus, as the analyte plug traverses the capil-
lary it causes the zeta potential to vary in the axial direction
and also to vary in time. The well known formula for elec-
troosmotic flow speed,ue = −εζE/4πµ (whereε andµ are
the dielectric constant and viscosity of the buffer,E is the
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applied electric field andζ is the localζ potential) would
then imply that different cross-sections of the capillary will
have different fluid fluxes, a scenario incompatible with the
fact that liquids are incompressible. The apparent paradox
is resolved through the appearance of induced pressure
gradients in the axial direction that enforce the incompress-
ibility condition, even though no external pressure differ-
ence may have been applied across the capillary. The actual
electroosmotic flow is intermediate in character between
electroosmotic flow in a capillary with uniformζ-potential
and a pressure driven flow. Since pressure driven flows
have a parabolic rather than a uniform profile, the altered
electroosmotic flow is no longer uniform over the capillary
cross-section. The resulting enhanced “Taylor dispersion” or
“shear induced dispersion”[10,11] is what causes the band
broadening and peak tailing observed in the CZE signal.

In this paper, the governing equations describing elec-
troosmotic flow and analyte dispersion in a cylindrical cap-
illary in the presence of wall interactions are formulated
(Section 2) and solved numerically (Section 3) in the limit
of infinitely thin Debye layers and Stokes flow. The numer-
ical solution is compared (Section 4) with the result of a
recently developed asymptotic theory (Appendix A). Con-
clusions are summarized inSection 5.

2. Mathematical formulation

We consider CZE in a cylindrical capillary of lengthL0
and radiusa0. In the absence of analyte adsorption and in
the limit of thin Debye layers, the electroosmotic flow speed
in such a capillary is (in cgs units)

ue = −εζ0E

4πµ
(1)

whereε is the dielectric constant of the fluid,E the applied
electric field,µ the viscosity andζ0 is the wallζ-potential (in
the absence of wall interactions). The variables of interest are
the concentration of the sample in the fluid,c̃(r̃, x̃, t̃) (moles
per unit volume) and adsorbed to the wall,s̃(x̃, t̃) (moles
per unit area), theζ-potentialζ̃(x̃, t̃), the fluid flow velocity
ũuu(r̃, x̃, t̃) and the fluid pressurẽp(r̃, x̃, t̃) which depend on
the distance from the axis of the capillary,r̃, distance from
the inlet, x̃, and the time,̃t. For each such variable,̃f , we
will define a dimensionless counterpartf = f̃ /f∗ where
f∗ is a characteristic value for the variablef̃ . We choose
the following characteristic valuesx∗ = r∗ = a0, t∗ =
a0/ue, u∗ = ue, ζ∗ = ζ0, c∗ = cmax, p∗ = µue/a0 and
s∗ = a0cmax. Here,∼ cmax is the maximum value ofc at
the initial time. In the following we will only work with
the dimensionless variablesf and will seldom refer to the
dimensional counterparts̃f again.

The evolution ofc is governed by an advection-diffusion
equation:

∂c

∂t
+ ∇ · [(uuu + uepx̂xx)c] = Pe−1∇2c, (2)

where Pe = uea0/D (the Peclet number),D being the
molecular diffusivity; uep is the electrophoretic speed in
units of ue. For definiteness, we consider only a single
species and setuep = 0, since the only effect ofuep is a
uniform translation of the peak relative to the mean flow.
The Reynolds number isRe (whereν is the kinematic vis-
cosity of the fluid)= (a0ue)/ν. In microfluidic applications
typically Re ∼ 0.01–1. For small Reynolds number, the
electroosmotic flow is governed by the Stokes form of the
hydrodynamic equations:

−∇p + ∇2uuu = 0, (3)

∇ · uuu = 0. (4)

with the coupling to the electric fieldE provided by the
Helmholtz-Smoluchowski slip boundary condition[12]

u(1, x, t) = ζ(x, t). (5)

If analytes with net molecular charge are adsorbed on the
surface, the density of surface charges and hence the surface
ζ-potential is altered. We take this effect into account through
the relation

ζ(x, t) = 1 − αs(x, t), (6)

whereα is a dimensionless parameter. We shall regardα as
a given constant that may either be determined from theory
(a linearization of Gouy–Chapman theory, for instance) or
by experiment. The interaction of the analyte with the wall
is modeled by a Langmuir second order kinetic law[13]

∂s

∂t
= kacw(x, t)[smax − s(x, t)] − kds(x, t), (7)

whereka andkd are (dimensionless) rates of adsorption and
desorption, respectively, andcw(x, t) = c(1, x, t) is the ana-
lyte concentration evaluated at the wall. The term withsmax
expresses the fact that there are a finite number of charged
sites at the wall where analyte can be adsorbed and hence the
wall has a saturation point. The dimensionless parameters
characterizing the interaction with the wall can be readily re-
lated to the corresponding dimensional parameters;smax =
s̃max/(a0cmax), ka = (cmaxa0/ue)k̃a, kd = (a0/ue)k̃d and
α = −(a0cmax/ζ0)(∂ζ̃/∂s̃). SinceEq. (7) must match the
diffusive flux of c(r, x, t) at the wall

∂s

∂t
= −Pe−1

(
∂c

∂r

)
r=1

. (8)

3. Numerical method

The characteristic length of a CZE capillary,L0 ∼
10–100 cm but a characteristic radius isa0 ∼ 10–100�m.
Since the computational grid size is determined by the
smallest relevant length scale in the problem (in this case
the grid size must be chosen to achieve proper resolution
in the r-direction) the simulation of the above problem
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is numerically intensive (or “stiff”) for realistic values of
L = L0/a0 = 103 to 105.

The size of the computational problem can be reduced
by exploiting an exact solution for electroosmotic flow in
a cylindrical capillary due to Anderson and Idol[14]. This
solution assumes

(1) Stokes flow (Re = 0).
(2) Helmholtz–Smoluchowski slip boundary conditions for

infinitely thin Debye layers,Eq. (5).
(3) Axial symmetry, so that theζ-potential is a function of

x andt only, ζ = ζ(x, t).

Under those assumptions, the velocity fielduuu = ux̂xx + r̂rrv

may be expressed in terms of the stream functionψ,

u = −1

r

∂ψ

∂r
(9)

v = 1

r

∂ψ

∂x
(10)

where the stream function is given by a series expansion

ψ = − r2

2
〈ζ〉 + 2

∞∑
m=1

ac
m(r) cos

(
2mπx

L

)

+2
∞∑

m=1

as
m(r) sin

(
2mπx

L

)
(11)

where

ac
m

ζ̂c
m

= as
m

ζ̂s
m

= rI0(αm)I1(αmr) − r2I0(αmr)I1(αm)

αmI2
1(αm) + 2I0(αm)I1(αm) − αmI2

0(αm)

(12)

and

ζ̂c
m = 1

L

∫ L

0
ζ(x, t) cos

(
2mπx

L

)
dx (13)

ζ̂s
m = 1

L

∫ L

0
ζ(x, t) sin

(
2mπx

L

)
dx (14)

are the cosine and sine transform of theζ function, ζ(x, t),
at the time instant for which the flow is being determined,
αm = 2mπ/L, and〈·〉 indicates the average over the length
of the capillary:

〈ζ〉 = 1

L

∫ L

0
ζ dx. (15)

In Eq. (12), In denotes the modified Bessel function of in-
teger ordern.

Thus, only the advection-diffusion problemEq. (2) and
Eq. (7)with boundary conditionEq. (8)needs to be solved
numerically. The velocity fielduuu appearing inEq. (2)is ob-
tained at each time step from the Anderson and Idol ana-
lytical result presented above. The latter depends onζ(x, t)

which in turn is related tos(x, t) throughEq. (6). The ad-
sorbed concentrations(x, t) is obtained by evolvings(x, t)

according toEq. (7). Thus, the problem reduces to solving
a pair of coupled partial differential equations forc(r, x, t)

and s(x, t) with given initial and boundary conditions. For
initial condition we will choose

c(r, x,0) = c0(x) (16)

s(x,0) = 0 (17)

where c0 will be some specified function centered atx0
and having some characteristic widthσ0. The parametersx0
and σ0 are chosen so that the initial concentration profile
is localized near the inlet but with negligible concentration
at x = 0. Physically this corresponds to a short time after
injection of the sample plug.

For boundary conditions in thex-direction we shall use
‘periodic’ boundary conditions,c(r,0, t) = c(r, L, t). This
is an artifice that is commonly used when (a) the true in-
let and exit boundary conditions are not known (b) the sys-
tem is not very sensitive to conditions at these boundaries.
Indeed, mathematically the ‘periodic’ boundary conditions
correspond to replacing the problem of a single analyte plug
travelling through a single capillary of finite length by an
infinite array of such capillaries joined end to end each con-
taining an analyte plug. However, if during the time period
under study, the concentration remains essentially zero at
the two ends, then the result of computing with the periodic
boundary condition differs only very slightly from a calcu-
lation that uses more ‘natural’ boundary conditions such as
c(r,0, t) = 0 andc(r, L, t) = 0. The periodic boundary con-
dition has the advantage of allowing a Fourier decomposition
of the concentration field which permits the use of highly
accurate spectral methods. One must be careful though in
ensuring that the concentration peak is kept well clear of
either boundary during the course of the simulation, since
otherwise one would obtain the unrealistic situation of the
sample re-entering at the inlet end upon exiting the opposite
end of the capillary. In the simulation the initial concentra-
tion peak is centered sufficiently far from the inlet end so
that the concentration at the inlet is negligible, and, the sim-
ulation is stopped before the sample gets too close to the
outlet so that no significant concentration builds up at the
outlet during the time period represented in the simulation.

A finite volume approach[15] is adopted for the numerical
solution ofEq. (2). This approach has the advantage that any
conservation laws that the continuum equations satisfy are
also satisfied exactly in the spatially discretized system. This
is important in order to avoid a “spurious decay” of the peak
due to numerical effects. For example,Eq. (2)together with
boundary condition (8) and the periodic boundary condition
in x imply that

d

dt

[∫ L

0
dx

∫ 1

0
2πrc(r, x, t)dr +

∫ L

0
2πs(x, t)dx

]
= 0

(18)

which express the fact that the the total number of molecules
(whether in solution or adsorbed to the wall) of the sample
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remains constant. In the absence of time discretization er-
rors a finite volume approach guarantees the validity of the
corresponding discrete relation

d

dt


∑

j

∑
k

2πrkcj,k!rk!xj +
∑
j

2πsj!xj


 = 0 (19)

where!rk and!xj are grid spacings in the radial and axial
directions and the indices ‘j’ and ‘k’ label the grid points.

For simplicity all spatial derivatives are approximated by
second-order finite differences. Time integration is perfor-
med using the fourth-order Runge–Kutta scheme with time
increments chosen to fulfil the CFL (Courant-Friedrichs-
Levy) condition. The simulations were performed with 2521
points in the axial direction and 20 points in the radial di-
rection. A finer grid led to no visible change in the results
which suggests a converged calculation.

4. Results

The following estimates (to within an order of magnitude)
may be made for typical CZE systems: capillary radiusa0 ∼
50�m, capillary lengthL0 ∼ 0.5 m, viscosity (water)ν ≈
10−6 m2/s, diffusivity D ∼ 10−9 m2/s (for small to moder-
ate sized molecules) and typical electroosmotic flow speed
ue ∼ 10−3 m/s. This allows us to make the following esti-
matesRe ∼ 0.05 andPe ∼ 50. The remaining dimension-
less parameterska, kd, smax andα that characterize the wall
interactions are more difficult to estimate since to the best
of the authors’ knowledge there appears to be no published
data on these parameters for interactions of cationic proteins
with fused silica walls. If the source of the attraction to the
wall is primarily electrostatic in origin, then it is reasonable
to suppose that saturation (s = smax) corresponds to neutral-
ization of the wall charge (ζ = 0). This requiresα = 1/smax
so we will choose the parameterα in this way. Experiments
by Towns and Regnier[16] show that the fraction of sam-
ple that is adsorbed varies within wide limits from zero to
essentially hundred percent (no signal recovered). However,
the interesting parameter regime to study is the situation
where the fraction adsorbed∼ 0.5. If the fraction adsorbed
is very much less than this, wall interactions are a relatively
weak effect and if it is much larger then no signal is likely
to be detected so that the calculation is irrelevant. In order
to determine theka that would achieve this, let us for the
purpose of making a very rough estimate assume that the
sample consists of a homogeneous cylindrical plug of fixed
length σ∗. Then, neglecting desorption and assuming that
the walls are far from saturation, we can write the following
equation for the time evolution of the concentration of our
sample in the cylinder:πa2

0σ∗(dc̃/dt̃) = −(2πa0σ∗)k̃as̃maxc̃.
Therefore, after timẽt ∼ L0/ue taken to traverse the capil-
lary, the remaining concentration may be estimated asc̃ ∼
cmaxexp[−2L0k̃as̃max/(a0ue)]. For c̃/cmax ∼ 0.5, we must
haveL0k̃as̃max/(a0ue) ∼ 1 or in terms of dimensionless

Table 1
Parameter Values for Simulation

Parameter L Re Pe α ka kd smax

Value 1000 0 100 1/smax 0.1 0.0005 0.01

variables,Lkasmax ∼ 1. Clearly, forkd, there is no lower
limit on what can be considered as an ‘interesting regime’.
Indeed, for relatively large proteins,kd is essentially zero
[6]. However, an upper bound on ‘reasonable values’ forkd
may be estimated. To do so, note that ifkd is large,s is es-
sentially zero ahead and behind the plug and at the plug,
the adsorption and desorption processes must be practically
at equilibrium. Thus, equating the right hand side of (7) to
zero we have

s ≈ sm

1 + (kd/ka)c
−1
w

≈
(
ka

kd

)
sm (20)

since cw ≈ 1. Thus, if kd � ka, s � sm in which case
the modification of the zeta-potential is unimportant. Thus
the parameter regime of interest to us, is 0< kd � ka.
The parameters for the numerical simulation, displayed in
Table 1, were chosen so as to be consistent with the above
estimates for typical systems. Other parameter values do not
make a significant difference to the main qualitative results,
and need not be reported here (see e.g.[9]).

The initial conditions chosen for the numerical simulation
weres(x,0) = 0 (so thatζ(x,0) = 1) andc(r, x,0) = c0(x)

wherec0(x) had the trapezoidal shape shown inFig. 1. The
asymptotic theory requires only initial values ofs and c̄ to
be specified (henceforth, an overbar denotes average over
the cross-section,̄c = ∫ 1

0 2rc dr). The radial distribution of
c is then determined byEq. (A.1) in Appendix A. For the
asymptotic theory we assumeds(x,0) = 0 and c̄(x,0) =
c0(x). Note however that this implies a slight radial depen-
dence of the concentration profile given by (A.1), so that
the initial conditions for the simulation and the asymptotic
theory are not quite identical even though the concentration
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Fig. 1. Initial analyte concentration profilec0(x); symbols: asymptotic
theory, line: numerical simulation.
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Fig. 2. Comparison of asymptotic theory (symbols) with numerical simula-
tion (lines) of the cross-sectionally averaged analyte concentration (lower
curves) andζ-potential (upper curves) at two time instants. The initial
concentration is shown inFig. 1.

averaged over the cross-section are the same. However the
difference represents a fast decaying transient and as the de-
tailed comparisons presented in the remainder of this sec-
tion will show, the slight mismatch in initial conditions does
not have any significant effect on the quantities of interest.
If desired this mismatch could be eliminated by substituting
c̄ = c0 in (A.1) and using the resulting functionc(r, x, t) as
the proper initial condition for the numerical simulation.

Fig. 2 shows the distribution of̄c and ζ at the instant
when the concentration peak arrives at a hypothetical detec-
tor placed at a distancexd from the inlet. The figure shows
two sets of results forxd = 450 andxd = 900 respectively.
These graphs refer to the spatial distribution ofc̄ andζ for
a single analyte species at two different instants of time and
should not be confused with multiple peaks from a multi-
component sample. It is seen that as the sample moves down
the capillary, the peak height decreases, the peak width in-
creases and the peak shape becomes markedly asymmetric.
The peak shapes have a striking similarity with observed
CZE signals in an uncoated capillary for cationic proteins
(see e.g. Fig. 8 of[16] and Fig. 10 of[17]; in making the
comparison one should keep in mind that in the detector
signals the horizontal axis represents time of arrival at a
fixed detector location so that the sharp edge appears first,
and then the gradually decaying tail). The following ratio-
nalization of the asymmetric peak seems plausible: Taylor
dispersion by itself is known, in the long time limit, to lead
to a Gaussian profile of the concentration. Thus, a thin slab
of fluid either ahead or behind the centroid of the distribu-
tion would contain the same amount of analyte provided the
distance from the centroid is the same in both cases. How-
ever, the slab behind the centroid has most of the material
distributed on the outer periphery whereas the slab ahead
of the centroid would have most of the material near the
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Fig. 3. Same asFig. 2 but showing only the concentration profile at the
second downstream station on a magnified scale.

centerline. Therefore wall adsorption is more effective at re-
moving material from the slab behind the centroid, which
would cause an assymetric shape in the profile. Desorption
does not play a significant role in the peak asymmetry as
the effect persists even forkd = 0 [9].

As expected, theζ-potential is seen to be reduced be-
hind the analyte peak. However, with passage of time, the
ζ-potential at a fixed position undergoes a gradual recov-
ery. This is due to desorption from the capillary walls. For
a short section near the inlet,ζ = 1 because in the simula-
tion the sample is introduced atx = 50 rather than atx = 0
in order to ensure that the concentration at the inlet remains
essentially zero throughout the simulation. For bothc̄ andζ
the simulation is seen to be in excellent agreement with the
theoretical calculation using the 1DEq. (A.3) presented in
Appendix A.Fig. 3 shows an amplified view of the second
peak (at detectorxd = 900). The difference between the
asymptotic theory and the exact solution is seen to be small.
Note that inFig. 3 the concentration does not drop to zero
after passage of the peak, but there is a “plateau” extending
many diameters behind the peak. Such “lack of return to the
baseline” is well known in the presence of wall interactions.
It is usually attributed to irreversible adsorption of analyte to
the detection window, however the presence of this plateau
in the concentration profile could also be a contributing fac-
tor. This long plateau is caused by the cumulative effect of
the analyte desorbing from the wall long after the main peak
has passed.

Fig. 4shows the arrival time as a function of distance from
the inlet for the sample peak. Such ‘elution time delays’
due to protein adsorption and its underlying causes are now
well understood[7,16]. Even though on the basis of formal
analysis we expect the asymptotic theory to be accurate only
after a ‘transition length’ of the order of the Peclet number
(100) times the capillary radius, it is seen that in practice, no
significant error is made if it is used throughout the capillary.
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Fig. 4. Comparison of asymptotic theory (symbol) with simulation (solid
line) for arrival time of concentration peak as a function of the distance
to the observation point from the inlet. The dashed line gives the elution
times in the absence of wall interactions.

5. Conclusion

The problem of the elution of a sample plug by elec-
troosmotic flow in the presence of wall interactions was
numerically simulated using a set of characteristic param-
eters typical of the separation of cationic proteins in fused
silica capillaries. The adsorption of the sample to the wall
and its subsequent desorption was modeled using Langmuir
second order kinetics. The adsorption of solute from the
fluid stream was assumed to change theζ-potential in a lin-
ear fashion, which in turn affected the hydrodynamics. The
Debye layer thickness was assumed very thin compared to
the capillary radius so that the coupling between electrical
effects and hydrodynamics could be modeled using the
Helmholtz-Smoluchowski slip boundary conditions. The
hydrodynamics itself was considered in the Stokes flow
limit, which allowed the use of an exact analytical formula
due to Anderson and Idol for calculating the velocity field
at each time instant. The partial differential equation for the
sample concentration was integrated using a finite volume
method using the velocity fields determined from Anderson
and Idol’s formula.

The numerical simulation was used to test the validity of a
recently developed asymptotic theory due to Ghosal[9] that
reduces the solution of the problem to that of solving a pair of
coupled partial differential equations forc̄(x, t) ands(x, t) in
one space dimension. The theory is expected to be accurate
at distances from the inletx̃ � a0Pe wherea0 is the capillary
radius andPe is the Peclet number defined earlier. Naturally,
for the theory to be useful the total capillary length,L0 must
satisfyL0 � a0Pe. The agreement between the computed
result and the asymptotic theory was found to be extremely
good. The fact that the theory is not expected to be very
accurate over a short transition lengtha0Pe > x̃ > 0, was

found not to have a significant impact on the accuracy of
the solution at later times.

The computation reproduced many of the well known
qualitative effects of wall interaction in CZE. Significant
peak broadening, peak tailing and reduction in peak intensity
was observed. Peak shapes consistent with observed shapes
in the presence of strong wall interactions were found. In
the presence of desorption, the main peak was found to be
followed by a very long low level ‘plateau’ due to the delayed
arrival of slowly desorbing analytes. This phenomenon too
is supported by practical observations.

Numerical simulation is a useful tool for the analytical
chemist as it provides the ability to calculate performance
parameters for microfluidic devices. For example, if a certain
wall coating has been designed that reduced adsorption by a
known factor one could calculate what effect this will have
on the plate count. If the change in the adsorption/desorption
coefficients with repeated use is modeled suitably, one could
calculate how the resolution of the separation device might
degrade over time. The problem size for a direct numerical
simulation of the whole system is generally very large on
account of the small aspect ratio between the capillary ra-
dius and length. The reduced set of one dimensional equa-
tions discussed here provides a much more efficient way of
accomplishing such calculations with very little reduction in
the accuracy of the results.
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Appendix A. Asymptotic theory for sample
concentration

The principal results of the asymptotic theory presented
in [9] is summarized below in the special case where (a)
Re → 0, (b) a single species interacts with the wall.

Following the same notation as in the rest of the paper,
the sample concentration is given by

c(r, x, t) = c̄(x, t) + 1
4Pe(1 − 2r2)∂ts

+ 1
24Pe(2 − 6r2 + 3r4)(ζ − ū)∂xc̄. (A.1)

The zeta-potential is related tos by Eq. (6)and, if the flow
is driven purely by a potential drop (that is no pressure drop
is imposed), then

ū = 〈ζ〉 (A.2)

where〈·〉 denotes average over the length of the capillary as
defined in (15). Thus,c is “slaved” toc̄ ands the dynamics
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of which evolve on a slow (compared to the molecular dif-
fusion time across the capillary in the radial direction) time
scale.

The slow dynamics is described by the following evolu-
tion equations

∂c̄

∂t
+ (ū + uep)

∂c̄

∂x
= ∂

∂x

(
Deff

∂c̄

∂x

)
+ S (A.3)

where

Deff = 1

Pe
+ Pe

48
(ζ − ū)2, (A.4)

is an “effective” diffusivity and

S = −2
∂s

∂t
+ Pe

12

∂

∂x

[
(ζ − ū)

∂s

∂t

]
, (A.5)

is a source term that is reponsible for the removal of analyte
from the buffer. Finally,s evolves according to

∂s

∂t
= f(c̄, s) − 1

4Pe f∂cwf
∣∣
cw=c̄

− 1
24Pe(ζ − ū)∂xc̄ ∂cwf

∣∣
cw=c̄

(A.6)

wheref(cw, s) denotes the function on the right hand side
of (7).
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