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An idealized model of a lifted flame above a round laminar jet is considered where diffusion rates of species
and temperature are assumed equal but differential diffusion with respect to jet momentum is allowed. The
combustion is described in terms of a global Arrhenius chemistry that is symmetric in fuel and oxidizer.
Theoretical results on the propagation speeds of triple flames, and, the Landau–Squire solution for a
nonreacting laminar round jet are combined to arrive at a transcendental equation for the lift-off height. For
given chemistry, the stability behavior is controlled by a single Schmidt number, S, characterizing the
differential diffusion between species (or temperature) and momentum and a parameter B, which is inversely
proportional to the square root of the jet Reynolds number. Lift-off and blowout are characterized by a pair
of critical curves in this two-dimensional parameter space the region between which corresponds to a stable
lifted flame. A critical value of the Schmidt number exists above which the lift-off height increases continuously
from zero on increasing the jet speed but below which the flame lifts off in a discontinuous manner through a
subcritical bifurcation. © 2001 by The Combustion Institute

INTRODUCTION

The accurate control of flame stabilization is a
key issue in many combustion processes, where
recirculation of hot products and partial pre-
mixing are usually combined to ensure flame
attachment. Flame stabilization is a complex
process in which partial premixing and the
physics of ignition and extinction are very im-
portant. To understand the basic mechanism at
a fundamental level, the diffusion flame formed
by a fuel jet in an oxidizing atmosphere has been
studied extensively and stands as a useful model
system for studying stabilization in a geometry
that is relatively simple.

It is observed in a round jet laminar flame,
that if the mass flow rate exceeds a critical value,
the base of the diffusion flame lifts off from the
burner tip and remains suspended at a certain
distance above the burner. The phenomenon is
known as “lift-off” and has been observed only
in certain fuels and not in others. In theory, a
further increase in the mass flow rate of the jet
causes the lift-off height to increase until the
base of the diffusion flame approaches the
flame tip at which point the flame blows out. In
most practical situations, the flow transitions to
turbulence before lift-off is achieved or soon

thereafter. However, under carefully controlled
laboratory conditions, it is possible to observe
the lift-off and blow-out behavior in the laminar
regime [1–3] and this paper is exclusively de-
voted to the laminar lifted flame.

Lift-off is a considerably more difficult prob-
lem than blowout as the detailed structure of
the viscous boundary layer near the tip of the
nozzle and heat loss to the nozzle play dominant
roles. Hysteresis effects are seen, that is, flame
lift-off and reattachment do not happen at the
same value of the mass flow rate. Near the
critical conditions a complex time-dependent
behavior where the flame jumps back and forth
between the lifted and attached configurations
can sometimes be observed. In this paper, we
consider a flame that is already lifted and we
assume that the mass flow rate is high enough so
that the flame is stabilized in the far field region
of the jet where the self-similar solution for a
nonreacting round jet applies. Therefore, con-
ditions very close to lift-off are not considered
in detail.

The stabilization of a lifted flame in the far
field of the jet is believed to be accomplished
through the mechanism of the triple flame. A
triple flame is a characteristic flame structure
that has been observed experimentally as well as
in numerical simulations wherever combustion
occurs in a partially premixed regime. The flame*Corresponding author. E-mail: s-ghosal@nwu.edu
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stabilization mechanism is shown schematically
in Fig. 1 in cross section. The fuel and oxidizer
undergo partial premixing in the zone ‘PM’. The
mixture then burns in two branches, the fuel
rich branch, ‘FR’ and the fuel lean branch ‘FL’.
Behind these two flame zones the hot streams of
unburnt fuel and oxidizer come together and
burn as a trailing diffusion flame, ‘DF’ along the
stoichiometric surface. The structure consisting
of the three branches FR, FL and DF is collec-
tively known as the triple flame. The triple flame
has a characteristic propagation speed deter-
mined by the local environment. The flame is
stabilized where the flame propagation speed
with respect to the fuel/oxidizer at rest matches
the flow speed on the stoichiometric line.

The laminar lifted flame from a round jet has
been studied in the context of the above triple
flame picture by Chung and Lee [1] and Lee and
Chung [2] using both theoretical and experi-
mental methods. They approximated the triple
flame speed as a constant equal to the stoichi-
ometric planar flame speed and used the far
field approximation to the Landau Squire solu-
tion for a jet issuing from a point source of
momentum. The result of this analysis was a
power law dependence of the lift-off height on
the mass flow rate that was checked out reason-
ably well by their experiments. The analysis
provided an interesting insight into the domi-
nant role that the Schmidt number played in the
lift-off phenomenon. For Schmidt number
greater than unity or less than 0.5, the lift-off
height increased with the mass flow rate as
expected. However, for Schmidt numbers be-
tween 0.5 and 1, their liftoff formula showed the
opposite behavior. They later showed by a lin-
ear stability analysis that the lifted flame was
unstable for Schmidt numbers less than unity.

In this paper we attempt to improve upon the
work of the previous authors by taking into
account recent progress in understanding of the
propagation properties of triple flames. The
speed of a triple flame is reduced relative to the
stoichiometric planar flame due to curvature
effects and increased due to stream line devia-
tion ahead of the triple flame on account of
density changes due to heat release [4]. These
effects are not necessarily small, in fact Lee and
Chung report that in their experiment, the fluid
velocity at the stabilization point was in fact
measured to be larger than the stoichiometric
flame speed, as would be expected for a triple
flame dominated by heat release effects. Triple
flame propagation speeds of about twice the
stoichiometric speed have been observed.

We will attempt to formulate a simplified
model problem that is analytically tractable and
yet contains the essential physical features of a
real jet flame. Thus, we consider a laminar
round jet of fuel issuing from a thin nozzle into
an oxidizing atmosphere. We will assume com-
plete symmetry between fuel and oxidizer, that
is, they have the same molecular weights and
diffusivities and the reaction rate is invariant
with respect to an interchange of fuel and
oxidizer. This is of course a mathematical ide-

Fig. 1. Schematic of the coordinate system and sketch
showing the location of the triple flame in a laminar lifted
diffusion flame over a round jet.
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alization suitable for analytical study but is
never strictly realized in the laboratory. Never-
theless, it serves as a useful baseline problem,
an understanding of which is an essential first
step. For the chemistry we will assume a global
Arrhenius model where the fuel and oxidizer
react directly to form the product through a
reaction rate with a constant (temperature in-
dependent) pre-exponential factor [18]. There-
fore, for given chemistry, the system is parame-
terized by three dimensionless numbers, the
Reynolds number R of the jet, the Schmidt
number S 5 n/k (n is the kinematic viscosity
and k is the mass diffusivity of fuel or oxidizer),
and, the Lewis number L 5 kT/k (kT is the
constant thermal diffusivity of the gas). For a
fixed jet Reynolds number, varying the Schmidt
number changes the location of the Stoichio-
metric line in the flow field of the jet and this
affects the lift-off height. Changing the Lewis
number also affects the lift-off height through
variation in the triple flame propagation speed.
In this study we will consider the Lewis number
to be fixed at unity and only consider the effect
of varying the Schmidt number. Our results
could in principle be generalized by incorporat-
ing Lewis number effects on triple flame speeds
into the theoretical framework. The model
problem thus formulated will be studied in the
limit where the Reynolds number is large (and
yet below the critical Reynolds number for
transition to turbulence), the Zeldovich number
characterizing the activation energy is large and
the heat release parameter a (the relative rise in
temperature along the stoichiometric line) is
much less than unity. The first two conditions
are well approximated in controlled laboratory
experiments but the last is usually not since a ;
0.8 for undiluted hydrocarbon flames. However,
the theoretical results based on the a ,, 1
assumption has been found to agree quite well
with full numerical simulations even in the case
a ; 0.8 in studies with isolated triple flames
[14].

In the following section we revisit the Land-
au–Squire solution for a round laminar jet and
introduce some notation and terminology that
are different but equivalent to that found in [1]
and [2] as they are better suited to our analysis.
Some recent results on triple flame theory are
also summarized. In the subsequent section, the

results of the previous two sections are com-
bined to obtain a transcendental equation that
gives the lift-off height as a function of the jet
Reynolds number. We then use this equation
for the lift-off height to analyze the lift-off/
blowout characteristics of the different regions
of parameter space. The conditions of validity
of our simplified model are discussed before
summarizing the principal results in the con-
cluding section.

THE LANDAU–SQUIRE SOLUTION FOR
THE ROUND JET

We consider an incompressible jet issuing
through a nozzle of radius “a” into a stagnant
atmosphere of the same fluid whose spatial
extent is infinite. At distances large compared to
the nozzle diameter (the far field) the self-
similar solution corresponding to a point source
of momentum [5–7] holds. In this paper, we will
only use the approximate form of this solution
valid for relatively large Reynolds numbers [6]

c*~r*, u ! 5 nr*f~u ! (1)

with f(u ) defined by

f~u ! 5 H 4u2/~u2 1 u0
2! for u # u0

2~1 1 cos u ! otherwise. (2)

Here c*(r*, u ) is the stream function in polar
co-ordinates (r*, u ), n is the kinematic viscosity
and u0 is related to the jet Reynolds number

R ; S F*
2pr*n2D1/ 2

(3)

as

R 5
32
3

u0
22. (4)

F* is the momentum injected by the jet in unit
time, r* is the density and the suffix ‘p’ indicates
that the quantity is in physical units. We are
interested in the regime Rcr . R .. 1 where
Rcr is the critical Reynolds number for transi-
tion to turbulence. This corresponds to a slen-
der jet dominated by inertial rather than viscous
effects, but the Reynolds number is still small
enough that the jet does not transition to tur-
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bulence. Such conditions can be achieved in
controlled laboratory experiments (e.g., those of
Chung and Lee [1]). Thus, u0 is a small dimen-
sionless parameter characterizing the slender-
ness of the jet. We will treat u0 rather than the
Reynolds number as the primary dimensionless
quantity of interest.

The theory can be simplified by a choice of
appropriate dimensionless variables. As a char-
acteristic length scale, one can either choose ‘a’
the jet radius, or ‘,F [ k/Us’ where ,F is the
flame thickness defined in terms of the thermal
diffusivity ‘k’ and the laminar stoichiometric
flame speed, ‘Us’. Of these, we choose the
latter, as in the far field, the jet diameter is
irrelevant. The appropriate scale factor for time
is then ,F/Us. In terms of these dimensionless
variables, the solution may be written as

u 5
1

r2 sin u

­c

­u
(5)

v 5 2
1

r sin u

­c

­r
(6)

c~r, u ! 5 c*/~Us,F
2! 5 Srf~u ! (7)

where (u, v) are the dimensionless velocity
components in polar co-ordinates (r, u ) and
S [ n/k is the Schmidt number.

We may introduce the fuel mixture fraction
‘Z’, it obeys the equation for a passive scalar
and has the value Z 5 1 in pure fuel and Z 5
0 in pure oxidizer. In the context of the Landau–
Squire solution, the mixture fraction field Z can
be written as [5]

Z 5
C
r S u0

2

u2 1 u0
2D2S

(8)

where C is a constant. The solution has a
singularity at the origin indicating that the so-
lution breaks down in the near field. The singu-
larity can be avoided by introducing a virtual
origin at a distance ‘r0’ below the jet exit and
taking this point as the origin of the polar
co-ordinate system. In order for the “jet thick-
ness” to coincide with the diameter of the
orifice at the jet exit, we must have r0 5 a/u0. If
we impose the condition that Z 5 1 at r* 5 r0

and u 5 0, we get C 5 a/(,Fu0). Thus, taking

into account the virtual origin, Eq. (8) reduces
to

Z 5
1

u0,r S u0
2

u2 1 u0
2D2S

(9)

where , 5 ,F/a 5 k/(Usa) is a dimensionless
parameter which is usually very small.

RESULTS FROM TRIPLE FLAME THEORY

Triple flames were first identified and observed
in a laboratory setting by Phillips [10]. Since
then, this combustion regime has been the
subject of many experimental studies [16, 17].
They were also seen in a variety of numerical
simulations (see Vervisch and Poinsot [11] for a
review). Dold [12] and Hartley and Dold [13]
proposed the first theoretical analysis of triple
flames based on the method of activation energy
asymptotics. The analysis of Dold assumed that
the upstream gradient of mixture fraction is
small, implying a weakly curved triple flame,
and further, neglected any effect of density
changes due to heat release. The subsequent
paper of Hartley and Dold [13] relaxed the first
assumption and presented a theory where the
speed of propagation of the triple flame is
determined as the solution of an integral equa-
tion for a moderately curved flame. For a
weakly curved flame, this relation reduces to the
algebraic equation due to Dold for determining
the flame speed. Heat release in a flame may be
characterized by the heat release parameter
a 5 (Ts 2 T0)/Ts, where T0 is the temperature
of the fresh gases and Ts is the adiabatic tem-
perature of a stoichiometric flame. Clearly, 1 .
a . 0. In typical hydrocarbon flames, a ; 0.8,
neglecting heat release effects correspond to the
limit a3 0. The effect of heat release on triple
flames was studied through numerical simula-
tion of the compressible fluid equations with a
global Arrhenius reaction between fuel and
oxidizer by Ruetsch et al. [4]. They showed that
heat release effects play an important, often the
dominant role in triple flame propagation. The
expansion caused by heat release behind the
flame front results in a deviation of the stream-
lines in front of the flame, in turn resulting in an
increase in triple flame speed. This increase can
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in fact off-set the reduction in speed due to
flame front curvature, so that, a weakly curved
triple-flame actually can propagate faster than a
planar flame.

A triple flame solution [14], based on an
approximation of the curved flame front by a
parabolic profile, has recently been developed
in the limit of large activation energy and small
but finite heat release. A closed form expression
for the triple-flame propagation speed is ob-
tained that accounts for the combined effect of
heat release and flame front curvature. Com-
parison to numerical simulation of the primitive
equations shows an acceptable agreement, even
for a ; 0.8. In the case of a weakly curved
flame, this triple flame solution is most trans-
parent and the easiest to interpret. This is the
one that we will use to determine the lift-off
height. These results, obtained on the assump-
tions mb ,, 1 and a ,, 1 are

U 5 1 1 a 2 k, (10)

k 5
bm~a!

Î4n 2 2
, (11)

m~a! 5
m~0!

1 1 a
. (12)

Here U is the triple flame propagation speed
normalized by the stoichiometric planar flame
speed, k is the curvature of the flame tip mea-
sured in flame units ,F, m(a) is a normalized
mixture fraction gradient ,FZs

21(dZ/d y)s at the
triple flame location, and m(0) is the corre-
sponding mixture fraction gradient in the ab-
sence of the flame (or equivalently, the mixture
fraction gradient for a flame with negligible heat
release). The justification for using the reduced
forms corresponding to mb ,, 1 is postponed to
a later section. The fluid is assumed to consist of
pure fuel (mass fraction YF) and pure oxidizer
(mass fraction YO) reacting through an Arrhe-
nius reaction rate BYF

nYO
n exp(2T/Ta). The

Zeldovich number b [ (Ta/Ts)a is a measure
of the temperature sensitivity of the reactions.
All transport coefficients are assumed constant
and the molecular weights and diffusivities of
fuel and oxidizer are assumed equal. It is seen
that the presence of heat release affects the
flame in two ways:

1. The triple flame speed is increased by the
additive term a which accounts for the low-
ering of the flow speed immediately ahead of
the flame by the combined effect of flow
divergence due to thermal expansion and
mass conservation.

2. The mixture fraction gradient is reduced due
to the pulling apart of adjacent streamlines
which in turn causes the flame curvature to
be less, accordingly the flame propagates
faster because heat losses are reduced.

For very weakly curved hydrocarbon flames,
a ' 0.8 and k ' 0, so that U ' 1.8, consistent
with the experimental observation [15] that the
flow speed at the base of the lifted flame (equal
to the triple flame speed) is almost twice the
adiabatic flame speed for the corresponding
stoichiometric mixture.

LIFT-OFF HEIGHT

We consider now the case of a stream of pure
fuel flowing into an initially stagnant oxidizing
atmosphere of infinite extent. If the mixture is
lighted, a steady diffusion flame would be estab-
lished after a period of time sufficiently long for
the initial disturbances to decay. The location of
the diffusion flame is then coincident with the
stoichiometric surface Z 5 Zs 5 1/ 2, or, using
Eq. (9),

r 5
2

,u0
S u0

2

u2 1 u0
2D2S

(13)

gives the shape of the diffusion flame. The
dimensionless mixture fraction gradient

m 5 U2
r

­Z
­u
U (14)

may be obtained by differentiating (9) and
eliminating the variable r using (13),

m 5 2S,
u

u0
S1 1

u2

u0
2D2S21

. (15)

Because we are only concerned with the far
field, the radial component of the mixture frac-
tion gradient is negligible, so that, the tangential
component given by Eq. (15) can be considered
equal to the component of this vector perpen-
dicular to the stoichiometric line. Similarly, the
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flow speed at the stoichiometric line in a direc-
tion parallel to it may be determined from Eq. 1
as follows:

u 5
4S,

u0
S1 1

u2

u0
2D2S22

(16)

The lift-off “height”, u is determined by equat-
ing the flow speed at the triple flame location
Eq. (16) with the triple flame speed determined
from Eq. (10) with (15) as the mixture fraction
gradient m(0). After some simplification, we
obtain the following transcendental equation
for determining the normalized lift-off height
x 5 u/u0:

f~ x! ; ~1 1 x2!2S22@1 1 Ax~1 1 x2!# 5 B
(17)

where

A 5
bu0

2~1 1 a!Î4n 2 2
(18)

B 5
u0

4S,
~1 1 a! (19)

In Eq. (16) , and u0 are both very small,
however, for a lifted flame to exist we must have
u ; 1, so that , ; u0. Therefore, A ; mb ,,
1, since we have assumed a weakly curved triple
flame, but, B ; O(1). The inverse of the
parameter B is proportional to the square root
of the jet Reynolds number, R and in this paper
we will use B21 rather than R to characterize
the strength of the jet. This allows a simpler
description free from cumbersome numerical
scale factors. Similarly, we will describe the
lift-off height using the variable x 5 u/u0 in-
stead of calculating the actual height above the
nozzle (r cos u 2 r0 cos u0) which may easily be
obtained from x using simple co-ordinate trans-
formations. The “n” in (18) refers to the com-
position exponent in the Arrhenius rate expres-
sion defined earlier.

ANALYSIS OF THE LIFT-OFF HEIGHT
EQUATION

The nature of solutions of the transcendental
Eq. (17) depends on the Schmidt number. We

will consider the two cases S $ 1 and S , 1
separately.

Schmidt Number Not Less Than Unity

Physical solutions of Eq. (17) must be in the
range 1 $ x $ 0, with the limits x 5 0 and x 5
1 corresponding to a flame at blowout and an
attached flame, respectively. Figure 2a is a
sketch of the function f( x), which is monoton-
ically increasing because A $ 0 and S $ 1.
Clearly, a solution for x exists, provided 1 #
B # Bm where

Bm 5 f~1! 5 4S21~1 1 2 A!. (20)

Fig. 2. Sketch showing the solutions of the transcendental
equation determining the lift-off height (A) S . Sc (B) S ,
Sc.
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The solution is unique. At B 5 Bm, x 5 1, this
corresponds to “lift-off”. For B . Bm the flame
remains attached. At B 5 1, x 5 0, and this
corresponds to “blow-out”. No flame is possible
if B , 1. A sketch of 1 2 x, a dimensionless
measure of the lift-off height with B21 is shown
in Fig. 3a. The bifurcation from an attached to
a lifted flame is seen to be supercritical.

At the intersection of B and f( x), f9( x) . 0.
If we trace back the origin of the various terms
in Eq. (17), the following interpretation for the
positive slope is clear. The local flow speed and
the local triple flame speed can in general either
increase or decrease with x, depending on the
value of the Schmidt number, S. A positive
slope at the solution “x” indicates that on a

slight displacement upward from the equilib-
rium position, the increase in triple flame speed
is more than any increase in the oncoming flow
speed. Conversely, for a slight displacement
downward from the equilibrium position the
decrease in triple flame speed is more than the
decrease in the fluid speed at the flame location.
In other words, the flame position is stable to
such displacements. On the other hand, if
f9( x) , 0, the flame would have been unstable.
A slight upward or downward displacement
would cause it to move away from the equilib-
rium location.

The above argument does not of course prove
stability against all small perturbations. Neither
does it prove that the attached flame is unstable
for B , Bm. However, we will accept these as
experimental facts.

Schmidt Number Less Than Unity

In this case, Eq. (17) allows for more complex
behavior. In the case A 5 0, f( x) decreases
monotonically with x, because S , 1. There-
fore, the only solution is unstable, since f9( x) ,
0. Setting A 5 0 is equivalent to neglecting
curvature effects in the triple flame propagation
speed. Under this assumption no stable solu-
tions are possible for S , 1 as pointed out by
Lee & Chung [2]. However, the situation changes
when one considers small (0 , A ,, 1)
nonzero values of A. It is clear from Eq. (17)
that for x 3 0, f( x) ; 1 1 Ax, increases with
x. When x is not close to zero, the dominant term
is (1 1 x2)2S22, and this decreases with x. There-
fore a maximum of the function f( x) exists in
the interval 0 # x # 1 if A is sufficiently small.

Let us denote this maximum point by x 5 xm

and assume xm , 1. Let Bm 5 f( xm). If B .
Bm no solutions exist (Fig. 2b). If B is slightly
less than Bm, a pair of solutions exist corre-
sponding to f9( x) . 0 and f9( x) , 0, respec-
tively. The former is stable, the latter is unsta-
ble. Figure 3b shows the bifurcation diagram.
The lift-off height defined as 1 2 x is plotted
against B21, a measure of the jet momentum.
The bifurcation to the lifted flame is seen to be
subcritical. Of the two branches in Fig. 3b, the
lower one corresponds to the unstable solution
and the upper branch corresponds to the stable
solution. In this situation lift-off is seen to be

Fig. 3. The bifurcation diagram of 1 2 x vs. 1/B showing
lift-off and blowout when (a) S . Sc (b) S , Sc.
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discontinuous. Upon being subjected to a large
enough perturbation the flame may suddenly
lift-off to a finite height above the burner.

A time dependent bi-stable state where the
flame rapidly jumps between the lifted and
attached configurations could happen in the
neighborhood of the point B 5 Bm. Such
behavior near to lift-off has indeed been ob-
served. A detailed consideration of such behav-
ior will require considerations of heat loss to the
burner lip. Another consequence of the subcriti-
cal nature of the bifurcation is that, the lift-off
may not happen at the same mass flow rate for
every realization of the experiment. The reason
is, the transition to a lifted flame is possible
before the linear stability limit is reached but it
requires a finite perturbation to accomplish.
Such external perturbations depend on ever
present fluctuations of a random and irrepro-
ducible nature.

The actual location of the maximum xm can
be found from the condition f9( xm) 5 0. This
gives a quartic equation for xm. It is convenient
to rearrange this equation and write it as

xm 5
A~1 1 xm

2 !~1 1 3xm
2 !

4~1 2 S!@1 1 Axm~1 1 xm
2 !#

. (21)

This can be solved iteratively. Because xm 5 0
when A 5 0, xm 5 0 can be taken as the zeroth
iteration. Substituting xm 5 0 on the right hand
side we obtain the leading term in the expansion
of xm in powers of the small parameter A:

xm 5
A

4~1 2 S!
1 · · · (22)

and hence

Bm 5 f~ xm! 5 1 1
A2

8~1 2 S!
1 · · ·. (23)

The singularity at S 5 1 is a consequence of the
fact that as S 3 1, from (17), xm 3 `.

We have seen that the bifurcation to a lifted
flame is always supercritical when S . 1 but can
be subcritical in the S , 1 case. The critical
Schmidt number Sc(Sc , 1) for this boundary
between supercritical and subcritical behavior is
achieved when the maximum of the function
f( x), x 5 xm becomes a point of inflexion.

For Schmidt numbers larger than Sc the
function f( x) is monotonic in the range 0 # x #

1, so there is only one stable solution corre-
sponding to a lifted flame provided 1 $ B $
Bm. The bifurcation from the attached to the
lifted state is therefore supercritical. For
Schmidt numbers smaller than Sc, there are two
solutions corresponding to a lifted flame and
the bifurcation is subcritical. When S . Sc, the
condition of lift-off is B [ Bm 5 f(1) so that
the lift-off boundary in S 2 B space is given by
Eq. (20). For S , Sc it is given by (23). The
blowout condition in all cases correspond to
B 5 1 because this is the point at which the stable
branch of the solution approaches the flame tip
x 5 0. For B , 1 no stable solutions exist.

All of this information is condensed in the
stability diagram of Fig. 4 showing the critical
curves for lift-off and blowout. A stable lifted
flame can only be supported in the region
between the two curves. For S , Sc, the
bifurcation to a lifted flame is subcritical but for
S . Sc it is supercritical. The dashed line is
obtained if (21) is solved numerically and the
symbols correspond to (23) for S , Sc. For S .
Sc both dashed line and symbols correspond to
Eq. (20).

DISCUSSION

In this analysis, the Landau–Squire solution for
the round laminar jet was combined with theo-

Fig. 4. The parameter space S 2 B21 showing the zone of
lifted flame solutions and the lift-off/blowout limits for A 5
0.2.
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retical results for triple flame propagation, to
gain some understanding of the laminar lifted
flame problem. However, in addition to the
assumption of the Lewis numbers being equal
for all species, we borrowed theoretical results
from triple flame theory that apply strictly to
planar flames. In the case of the lifted flame
from a round jet, the flame is axially symmetric
instead of planar, and further, the jet velocity is
not quite uniform in space. For the theory to be
applicable, the radius of curvature of the triple-
flame needs to be much smaller than the radius
of the flame cone. Further, the variation of the
jet velocity over a distance of the order of the
radius of curvature of the triple flame should be
small. We now examine the conditions under
which these assumptions are true.

By using Eqs. 5, 11, 12, and 15 we have

kF 1
ur

­u
­uG

21

5
bS

~1 1 a!Î4n 2 2
(24)

Any effect of the nonuniformity of the jet
velocity field at the stabilization point can be
neglected if the quantity on the right is much
greater than unity. This condition is certainly
true in the asymptotic limit a 3 0 and b 3 `.
For a typical hydrocarbon flame of pure fuel
burning in air, a ' 0.8, n ' 1, b ' 8, and S ;
1, so that the right hand side of Eq. 24 is
approximately 3.2.

A comparison of the relative magnitudes of
triple flame curvature and the curvature of the
partially premixed front due to the axisymmetric
geometry can also be made. The radius of
curvature of the flame ring at the base of the
lifted flame is R ' ru. By using Eqs. (11), (12),
and (13) we easily derive the following relation
between the two principal curvatures of the
diffusion flame edge.

kR 5
2bS

~1 1 a!Î4n 2 2
F1 1

u0
2

u2G21

(25)

If u/u0 ; 1, the right hand side is very large in
the limit of large activation energy, b 3 ` so
that using the solution for a planar flame is
justified. However, at the flame tip, the radius of
curvature of the base of the flame cone goes to
zero, so that the assumption of a planar triple
flame must break down. If kR ; 1 is considered

the limit at which the assumption of a planar
flame breaks down, then

u0
2

u2 ,
2bS

~1 1 a!Î4n 2 2
2 1 (26)

defines the limit of validity of the approxima-
tion. In the limit of b 3 `, the planar solution
for the triple flame is applicable except for an
infinitely small region near the flame tip. How-
ever, for the typical numerical values for hydro-
carbon flames used in the last paragraph, we
have u/u0 . 0.4. Therefore, though neglect of
the curvature of the flame cone is consistent
with the large Zeldovich number assumption,
corrections due to this curvature could be im-
portant for real hydrocarbon flames.

In using the theoretical expression for the
triple flame speed, we have used Eqs. (11) and
(12) that correspond to a weakly curved triple
flame. This means that b multiplied by the
mixture fraction gradient in flame units must be
small, that is,

2bS,

~1 1 a!Î4n 2 2
S u

u0
DF1 1

u2

u0
2G2S21

,,1 (27)

This condition is satisfied provided , 5 ,F/a ,,
b21, that is, if the flame itself is much thinner
than the nozzle diameter. Because , ; u0, this
condition is also equivalent to A ,, 1.

CONCLUSION

In an earlier work, Chung and Lee have shown
that the lift-off height for a laminar lifted flame
may be calculated based on a balance between
the triple flame propagation speed and the jet
velocity assuming that the triple flame speed is
approximately equal to the planar flame speed.
In this paper we have extended and refined this
previous work by using analytical results for the
triple flame speed that account for deviations of
the triple flame speed from the planar flame
speed due to effects of heat release and curva-
ture. We find that stable lifted flames are pos-
sible for all values of the Schmidt number,
however, the region of parameter space that
supports a lifted laminar flame is very narrow
for Schmidt numbers less than a critical value
Sc ; 1. This is a modification of the earlier
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result of Chung and Lee who found that flames
with Schmidt numbers less than unity must be
unstable. The present analysis reveals an inter-
esting feature of the transition to a lifted flame.
A curve is identified in the parameter space
defined by the Schmidt number and jet Reyn-
olds number that separates the region where the
transition to lift-off is subcritical from the zone
where it is supercritical. In the subcritical case,
the flame can lift-off to a finite distance above
the nozzle without necessarily going through the
intermediate locations. Further, the transition
point can depend on external perturbations and
may not be exactly reproducible. Oscillatory
behavior between the two simultaneously exist-
ing linearly stable solutions is possible. This
might explain some of the qualitative effects
seen in a laminar jet flame close to lift-off.
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