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Capillary-zone electrophoresis (CZE) is an efficient separation method in analytical
chemistry. It exploits the difference in electrophoretic migration speeds between
charged molecular species in aqueous solution when an external electric field is
applied to achieve separation. In most cases the electrophoretic migration of species
is also accompanied by a bulk electro-osmotic flow in the capillary due to the presence
of a zeta-potential at the capillary wall. Adsorption of charged species at the wall
could modify this zeta-potential in a non-uniform manner. This induces axial pressure
gradients, so that the flow is no longer uniform over the capillary cross-section. The
resulting shear-induced dispersion of the sample is a serious cause of band broadening
in CZE particularly for species such as proteins and peptides which adsorb strongly
on capillary walls. The problem of the spatio-temporal evolution of the sample
concentration is studied in the presence of such wall interactions. An asymptotic
theory is developed that is valid provided axial variations have characteristic length
scales that are much larger than the capillary radius and temporal variations have
a characteristic time scale much larger than the characteristic diffusion time over
a capillary radius. These conditions are normally satisfied in CZE, except when
the sample is close to the inlet, on account of the capillary length being very
much larger than its radius. It is shown that the cross-sectionally averaged sample
concentration obeys a one-dimensional partial differential equation. Further, the full
three-dimensional concentration field may be calculated once the cross-sectionally
averaged concentration field is known. The reduced system is integrated numerically
and is shown to lead to predictions consistent with known observations on CZE in
the presence of wall interactions.

1. Introduction
Capillary zone electrophoresis (CZE) is one of the methods employed in analytical

chemistry for the separation of mixtures of chemical species by exploiting their dif-
ferent electrophoretic mobilities in aqueous solution (see Weinberger 2000; Jorgenson
1987 for a basic introduction). Since its discovery in the early 1970s, CZE has gained
in popularity over more classical gel electrophoresis methods due to its superior
resolution, short analysis times and small sample size requirement. In recent years,
it has been the object of renewed interest due to the possibility of miniaturizing the
device and integrating it in the ‘Lab on a chip’. Such a device could in principle
accomplish biochemical experiments at speeds that are orders of magnitude faster
than are possible with existing technology while requiring extremely small quantities
of samples and reagents (see e.g. Jakeway, de Mello & Russell 2000).
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In its simplest form, a benchtop CZE device consists of a micro-capillary
(characteristic diameter 10 − 100 µm and 10 − 100 cm long) connecting two reservoirs.
The micro-capillary and both the reservoirs are filled with an ionic aqueous solution
(the buffer) of known pH. (We only discuss ‘free solution’ CZE as opposed to
separation modes where the capillary is filled with a sieving gel.) An electric potential
difference (∼ 30 kV) is applied between the inlet and outlet reservoirs by means of
electrodes. The sample (analyte) is introduced as a plug near the inlet, and allowed
to migrate towards the outlet due to the electro-osmotic flow induced by the electric
field. Any particular species of molecule migrates with a velocity ue + ve where ue is
the electro-osmotic velocity of the fluid in the capillary and ve is the electrophoretic
migration velocity specific to the chemical species. The electro-osmotic velocity may
be calculated from the well known (Probstein 1994) formula:

ue = −εdζ∗E

4πµ
(1.1)

(in CGS units) where εd is the dielectric constant of the liquid, ζ∗ is the wall zeta-
potential, E is the applied electric field and µ is the dynamic viscosity of the liquid.
This formula is valid provided the zeta-potential is constant over the capillary wall
and the Debye layer thickness is very much smaller than the capillary radius. The
latter condition is usually satisfied in the applications we are concerned with. Since
ve is different for different species of molecules, the analyte separates into zones
of homogeneous composition each with a characteristic electrophoretic mobility. A
ultra-violet absorbance detector near the outlet end detects the arrival of each zone by
monitoring the attenuation of ultra-violet light, which alters the electrical signal from
a photodetector. The spectrum consist of a series of peaks in the electrical output.
Each peak corresponds to the arrival at the detector of a zone which determines the
electrophoretic mobility of the respective species.

Under ideal circumstances, the electro-osmotic flow profile is uniform (except in a
very thin, ∼ 1–10 nm, boundary layer – the Debye layer – in which the flow speed
decreases rapidly in order to satisfy the ‘no-slip’ boundary condition at the wall)
over the capillary cross-section. Thus, there is negligible shear-induced dispersion
so that ‘diffusion limited’ separation, where resolution is limited only by molecular
diffusion, is potentially realizable. In practice, there are multiple known mechanisms
of band broadening that prevent the diffusion-limited theoretical resolution from
being realized (see the recent review by Gaš & Kendler 2000). In this paper we
address the problem of dispersion caused by variability in the wall zeta-potential
due to adsorption of analytes from the fluid stream. Perturbations due to such
inhomogeneity not only alter the flow profile, but also the bulk flow rate, as shown by
Anderson & Idol (1985) and Ghosal (2002c). Thus, in addition to band broadening,
the elution times are altered making it difficult to calculate mobilities with accuracy.
Adsorption also causes loss of some of the sample.

Analytical results on dispersion in the presence of wall adsorption have been
presented by Gaš et al. (1995) and Štědrý, Gaš & Kendler (1995). Though their
analyses take account of the fact that analyte is lost to the wall, the consequent
modification of the zeta-potential and therefore the hydrodynamic flow field have
been neglected. Indeed, the hydrodynamics is restricted to the trivial case of uniform
flow at constant velocity independent of the adsorption process. However, recent
theoretical as well as experimental work indicates that the modification of the the
zeta-potential by adsorption, and the consequent perturbation of the hydrodynamic
field, is an important, if not the principal cause of dispersion (Ghosal 2002a, b, c;
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Figure 1. Schematic diagram illustrating the elements of a CZE apparatus.

Towns & Regnier 1992; Herr et al. 2000). Analyses of similar ‘purely kinematic’ models
that neglect the perturbation in the hydrodynamic field have also been presented by
Ermakov et al. (1995), Schure & Lenhoff (1993) and Zhukov, Ermakov & Righetti
(1997). The most comprehensive study to date on the problem of wall adsorption
and its consequences is an experimental one, due to Towns & Regnier (1992). These
experiments together with their interpretation using simple fluid mechanical models
have been discussed elsewhere by Ghosal (2002a, b).

The more restricted problem of determining the fluid flow in the presence of spatially
varying zeta-potentials has been investigated in a number of recent studies. The first
appears to be due to Anderson & Idol (1985), who derived an exact solution to the
problem of electro-osmotic flow in the limit of zero Reynolds number and infinitely
thin Debye layers, through a uniform capillary with a zeta-potential that varies only
in the axial direction. Ajdari (1995, 1996) and Long, Stone & Ajdari (1999) have
investigated the problem of flow modification due to variable zeta-potentials for flow
between parallel plates. Stroock et al. (2000) reported observations of electro-osmotic
flow in a long channel of rectangular cross-section with a patterned surface charge of
alternating sign that was fabricated using soft lithographic techniques. The problem of
electro-osmotic flow in a straight micro-channel of arbitrary cross-sectional geometry
and zeta-potential distribution has recently been presented by Ghosal (2002c), in the
‘lubrication approximation’ which requires that any variation of the cross-sectional
shape, area or the zeta-potential in the axial direction should take place on a length
scale that is very much larger than a characteristic channel radius. The dispersion of
analytes caused by such variability in the wall zeta-potential has not been investigated
however.

In the next section a mathematical formulation of the problem of analyte dispersion
in CZE due to wall adsorption is presented. The assumption of ‘slow variations’ is
invoked in § 3 to derive the asymptotic result mentioned earlier. In § 4 the reduced
equation is solved numerically and its predictions are discussed in the light of known
observations. Conclusions are summarized in § 5.

2. Mathematical formulation
Let us consider a uniform-bore capillary of radius a0 (figure 1). We will adopt a0

as our unit of length and a0/ue as our unit of time, where ue is given by (1.1) and
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ζ∗ is the zeta-potential of the uncontaminated capillary. Let us adopt a cylindrical
coordinate system (r, θ, x) with the origin at the inlet and x-axis along the centreline
of the capillary. Then the inner surface of the capillary is at r =1, the inlet is at x = 0
and the outlet is at x = L, where L � 1. We will assume that the concentration of all
chemical species in solution is normalized by a single reference value c∗ (the number
of moles per unit volume), and the corresponding adsorbed concentrations at the
walls are all normalized by c∗a0 (the number of moles per unit area).

Then the concentration of any particular species, c, obeys the advection–diffusion
equation

∂c

∂t
+ (u + uep x̂) · ∇c = Pe−1∇2c, (2.1)

where uep = ve/ue is the dimensionless electrophoretic migration velocity of the species,
Pe= a0ue/D is its Péclet number and D is its molecular diffusion coefficient. The
diffusive flux of any species is assumed to be unaffected by the presence of other
species in the sample, an assumption that is valid provided the sample is sufficiently
dilute. The assumption of the sample being dilute also eliminates other physical
effects such as variations in the electric field strength caused by the dependence of the
electrical conductivity on sample concentration. The latter effect could be important
at high sample concentrations (Mikkers, Everaerts & Verheggen 1979) and is itself a
source of band broadening. In (2.1) the hydrodynamic velocity is u. In the absence of
adsorption, u = x̂; however in general u must be obtained by solving the equations
for mass and momentum conservation of the fluid. The loss of analyte to the wall is
described by the boundary condition:

−Pe−1 ∂c

∂r

∣∣∣∣
r=1

=
∂s

∂t
(2.2)

where s is the adsorbed concentration of the species at the wall. In order to complete
the description we need a law of wall adsorption which we will write in the general
form

∂s

∂t
= f (s, cw, · · ·). (2.3)

Here cw = c(1, x, t) is the concentration at the wall and ‘· · ·’ indicates that the rate
of adsorption at the wall of a given species could depend on the concentration at the
wall of all of the other species and could possibly also have an explicit dependence
on position and time. The analysis presented in this paper does not require us to
make any specific assumptions about the functional form of f . In practice, one often
uses the ‘Langmuir law’ for f , which is

f = Kacw(sm − s) − Kds (2.4)

where Ka and Kd are adsorption and desorption coefficients characterizing the inter-
actions of the species with the wall material. We will also adopt this form in the
numerical calculations in § 4. Since adsorption at the wall alters the wall zeta-potential,
the zeta-potential is in general a function of position and time:

ζ = g(s, · · ·) (2.5)

where the function g describes the effect of the adsorbed species on the zeta-
potential. Here ‘· · ·’ denotes the adsorbed concentrations of all of the other species
and possibly an explicit position and time dependence as well (e.g. if the capillary
was already contaminated at t = 0). Since the zeta-potential is proportional to the
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surface concentration of charge, g will usually be a linear function of the adsorbed
concentration s of charged species.

In the limit of an infinitesimally thin Debye layer, the electro-osmotic effect may be
incorporated in the hydrodynamic equations through the Helmholtz–Smoluchowski
‘slip’ boundary condition (see Probstein 1994):

u|r=1 = ζ x̂, (2.6)

where ζ is the zeta-potential normalized by ζ∗. Inside the capillary, the hydrodynamic
velocity, u, satisfies the constant-density Navier–Stokes equations

Re(∂t u + u · ∇u) = −∇p + ∇2u, (2.7)

∇ · u = 0, (2.8)

where Re = (a0ueρ0)/µ is the Reynolds number, ρ0 is the density of the liquid and
p is the pressure in units of µue/a0. In microfluidic applications usually Re ∼ 10−3–1,
so for generality we will assume that Re ∼ O(1). For an uncontaminated capillary,
ζ = 1, therefore (2.6)–(2.8) imply u = x̂, provided there is no externally applied pressure
gradient so that the pressure gradient term in (2.7) is zero.

The formulation (2.6)–(2.8) may be regarded as the lowest-order approximation
to the coupled Navier–Stokes and Poisson–Boltzmann equations describing electro-
osmotic effects near rigid boundaries with respect to the parameter (λD/a), where λD

is the Debye length and a is the smallest geometrical length scale in the problem.
Asymptotic analysis (Anderson 1985) with respect to the parameter λD/a shows
the existence of a boundary layer of physical thickness of the order of λD within
which electrical forces on the charged free ions are balanced by viscous forces.
Outside this boundary layer the fluid may be regarded as electrically neutral, with the
asymptotic matching condition (2.6). In CZE, a ∼ a0 ∼ 10–100 µm and λD ∼ 1–10 nm
so that λD/a ∼ 10−3–10−5. Thus, the assumption of an infinitely thin Debye layer is
an excellent approximation.

3. The limit of slow variations
The equations presented in the last section, together with appropriate boundary and

initial conditions, should provide a complete specification of the problem. However,
on account of the smallness of the capillary radius in comparison to its length
(L ∼ 103–105), direct numerical integration is inefficient. This disparity in scales can
be exploited however to derive a reduced description of the system that only involves
solving a partial differential equation in one space variable. This is done next.

We will consider the limit when axial variations in all dependent variables occur on a
characteristic length scale that is very much larger than a0 and all temporal variations
occur on a characteristic time scale that is very much larger than the diffusion time
tD ∼ a2

0/D, where D is the diffusivity of the slowest diffusing component in the sample.
Evidently, these assumptions are not necessarily true at the time of injection, since
the initial distribution of analyte concentration can be quite arbitrary, and may very
well have a characteristic length scale for variation in the axial direction that is much
smaller than a0. However, as the plug is advected downstream with the characteristic
speed, ue, it undergoes diffusive spreading. As a result, Fourier-modes of wavenumber
k are damped by the exponential factor exp[−2Dk2t]. The limit of ‘slow’ variations as
defined above is reached after a time interval such that 2Dk2

mt � 1, where km = π/a0,
that is, when t � tD . In this time, the sample has moved a distance x � xm from the
injection point, where xm = a0Pe. However, this requirement alone is not sufficient to
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ensure slow variations since the dynamics of the adsorption process also defines a
chemical time scale, tc, that depends on the function f in equation (2.3). In particular,
for the Langmuir form, (2.4), tc ∼ K−1

a tD . For the assumption of slow variations to be
applicable, we must have tc/tD ∼ K−1

a � 1. In the language of combustion theory, Ka

is a ‘Damköhler number’ and the above requirement is just the opposite of the limit
usually studied in combustion. In CZE the characteristic adsorption times are of the
order of the transit time, tc ∼ L0/ue, where L0 is the capillary length in physical units.
Indeed, if tc is much smaller than this, then no sample will be detected at all and if it
is much larger then adsorption is not of significance. Therefore tc � tD requires that
(L0/a0)Pe−1 � 1 or L0 � a0Pe. This condition also ensures that xm � L0 so that the
assumption of slow variations is valid everywhere except for a relatively short region
near the inlet section. In CZE, L = L0/a0 ∼ 104–105 whereas Pe ∼ 10–100. Thus, the
requirement L0 � a0Pe is satisfied. In equation (2.5) we have allowed ζ to depend
explicitly on space and time in addition to its dependence on s. Obviously, for our
analysis to be valid, any such spatial variations must be on a length scale much larger
than a0 and any such temporal variations must have a characteristic time scale much
larger than tD . Further, our analysis is not valid within a distance from the outlet
that is comparable to the capillary radius as in this region the dependent variables
undergo rapid variations to adjust to the conditions at the outlet reservoir.

3.1. Asymptotic theory

We now consider the limit of slow axial variations by postulating that our dependent
variables are functions of r and the slow variables T = εt and X = εx, where ε is a small
parameter. The equation of continuity then requires that ṽ = v/ε and p̃ = εp be of
order unity, where v is the radial component of u. Slow variations in s also require that
f in equation (2.3) be of order ε. It is therefore convenient to define f̃ = f/ε, where f̃

is of order unity. We look for solutions satisfying this requirement of slow variations
by re-writing equations (2.1)–(2.8) in terms of the variables r, X, T , c, u, ṽ, p̃ and f̃ ,
where u denotes the axial component of u, and expanding all dependent variables in
asymptotic series in powers of ε, in the form φ = φ0 + εφ1 + ε2φ2 + · · · (φ0 �= 0).

3.1.1. Lubrication flow

Let us first consider the flow field. The equations for determining each succesive
term in the asymptotic series may be obtained from equations (2.6), (2.7) and (2.8)
by equating coefficients of successive powers of ε to zero. Thus, at lowest order, we
obtain

−∂p̃0

∂X
+

1

r

∂

∂r

(
r
∂u0

∂r

)
= 0, (3.1)

−∂p̃0

∂r
= 0, (3.2)

∂u0

∂X
+

1

r

∂

∂r
(rṽ0) = 0, (3.3)

u0(1, X, T ) = ζ0(X, T ), (3.4)

ṽ0(1, X, T ) = 0. (3.5)

These equations are simply the well-known lubrication limit of the equations of
incompressible hydrodynamics. Solutions have been presented by the author in the
general case of arbitrary channel geometries (Ghosal 2002c). For a uniform cylindrical
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capillary the solution is

u0 = ζ0 − 2(1 − r2)(ζ0 − u0), (3.6)

ṽ0 = 1
2
r(1 − r2)∂Xζ0, (3.7)

where u0 is the mean flow rate. The mean flow rate can be related to the zeta-potential,

u0 =
�p

8L
+ 〈ζ0〉. (3.8)

where �p = p(0) − p(L) is the applied pressure drop (if any) across the capillary. In
CZE usually �p =0. In equations (3.6) and (3.8) and throughout this paper, the
overbar will denote an average over the cross-section and the angular brackets will
denote an average over the capillary length. Thus, for any variable F (r, X, T ),

F = 2

∫ 1

0

rF dr, (3.9)

〈F 〉 =
1

L

∫ L

0

F dz. (3.10)

In the following analysis, the correction to the lubrication-theory mass flow rate u1

will be needed. In order to calculate it, we need to solve the hydrodynamic equations
at the next order. This is straightforward in principle; the calculations are presented
in the Appendix. Here we simply write down the final result:

u1 = 〈ζ1〉 − 1

48
Re

d

dT

(
�p

L

)
− 1

8
Re

d〈ζ0〉
dT

. (3.11)

For generality we have allowed the imposed pressure gradient �p to be time
dependent. Obviously any temporal variation needs to take place on a time scale
that is slow in relation to the diffusion time tD .

3.1.2. Analyte concentration

We now consider equations (2.1) and (2.2) rewritten in terms of the slow and fast
variables

1

r

∂

∂r

(
r
∂c

∂r

)
= εPe(∂T c + uep∂Xc + u∂Xc + ṽ∂rc) − ε2∂XXc, (3.12)

−Pe−1

(
∂c

∂r

)
r=1

= ε∂T s. (3.13)

At lowest order, we obtain (3.12) and (3.13) for c0 but with a zero right-hand side.
The solution, subject to the condition that there be no singularity on the axis, is
c0 = c0(X, T ), that is, c0 is independent of r . At the next order, we obtain an equation
for c1:

1

r

∂

∂r

(
r
∂c1

∂r

)
= Pe[∂T c0 + u0∂Xc0 + uep∂Xc0], (3.14)

−Pe−1

(
∂c1

∂r

)
r=1

= ∂T s0. (3.15)

If we average both sides of (3.14) over the cross-section of the capillary, the left-hand
side, on using the boundary condition (3.15) and the requirement that ∂rc1 be finite on
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the axis, becomes −2 Pe ∂T s0. Thus, equations (3.14)–(3.15) have a solution provided
the following solvability condition is satisfied:

∂T c0 + (u0 + uep)∂Xc0 = −2∂T s0, (3.16)

giving us an evolution equation for c0.
Physically this equation indicates that the analyte band will move with a velocity

u0 + uep , the algebraic sum of the bulk electro-osmotic flow speed and the electro-
phoretic migration speed, and, if ∂T s0 is a positive quantity (adsorption), the
concentration of the analyte in the band will decay. Note that equation (3.16) does
not lead to any dispersion or band broadening. In order to recover those effects, we
must go to a higher order in the expansion. This we do next, but first we write down
the solution to equations (3.14) and (3.15), the existence of which is now assured by
the solvability condition (3.16). By straightforward integration with respect to r ,

c1(r, X, T ) = c1(0, X, T ) − Pe

2
r2 ∂T s0 − Pe

8
(ζ0 − u0)r

2(2 − r2) ∂Xc0. (3.17)

If we average both sides of this equation over the cross-section of the capillary, the
concentration on the centreline, c1(0, X, T ) may be expressed in terms of c1(X, T ),

c1(0, X, T ) = c1 +
Pe

4
∂T s0 +

Pe

12
(ζ0 − u0) ∂Xc0, (3.18)

so that equation (3.17) may also be written as

c1(r, X, T ) = c1(X, T ) +
Pe

4
(1 − 2r2) ∂T s0 +

Pe

24
(2 − 6r2 + 3r4) (ζ0 − u0)∂Xc0. (3.19)

To obtain an evolution equation for c1 we need to consider the order ε2 terms in
(3.12) and (3.13), which give

1

r

∂

∂r

(
r
∂c2

∂r

)
= Pe[∂T c1 + u0∂Xc1

+ uep∂Xc1 + ṽ0∂rc1 + u1∂Xc0 + ṽ1∂rc0] − ∂XXc0, (3.20)

−Pe−1

(
∂c2

∂r

)
r=1

= ∂T s1. (3.21)

On averaging both sides of (3.20) over the cross-section and using the boundary
condition (3.21) we obtain the solvability condition

∂T c1 + u0∂Xc1 + uep∂Xc1 + ṽ0∂rc1 + u1∂Xc0 + 2∂T s1 − Pe−1∂XXc0 = 0, (3.22)

where we have made use of the fact that c0 is a function of X and T only, so that
∂rc0 = 0 and c0 = c0. On substituting the expressions for u0, ṽ0, and c1 from equations
(3.6), (3.7) and (3.19) into (3.22) and evaluating the cross-sectional averages, we arrive
at the following equation for c1;

∂T c1 + (uep + u0)∂Xc1 + 2∂T s1 = −u1∂Xc0 + Pe−1∂XXc0

+
Pe

12
∂X[(ζ0 − u0)∂T s0] +

Pe

48
∂X[(ζ0 − u0)

2∂Xc0]. (3.23)

3.2. Evolution equations for c and s

It is possible to combine the evolution equations for c at zeroth and first order
to obtain a single equation for c. This is achieved by multiplying (3.23) by ε and
adding the result to (3.16) and remembering that higher-order terms may be added
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or dropped without affecting the asymptotic validity of the resulting equation. Thus,
we obtain

∂c

∂t
+ (u + uep)

∂c

∂x
=

∂

∂x

(
D ∂c

∂x

)
+ G (3.24)

where

u =
�p

8L
+ 〈ζ 〉 − 1

8
Re

d〈ζ 〉
dt

− 1

48
Re

d

dt

(
�p

L

)
(3.25)

is the bulk flow speed,

D =
1

Pe
+

Pe

48
(ζ − u)2 (3.26)

is an ‘effective’ diffusivity and

G = −2
∂s

∂t
+

Pe

12

∂

∂x

[
(ζ − u)

∂s

∂t

]
(3.27)

is a source term that is reponsible for the removal of analyte from the buffer. We
have now reverted to our original independent variables r, x and t so that ε no longer
appears explicitly in these equations. The zeta-potential is given by (2.5) as a function
of the adsorbed species concentrations, ζ = g(s, · · ·).

The distribution of concentration may be found from c = c0 + εc1 + · · ·, and
equation (3.19):

c = c(x, t) +
Pe

4
(1 − 2r2) ∂t s +

Pe

24
(2 − 6r2 + 3r4) (ζ − u)∂xc. (3.28)

This expression is asymptotically correct to order ε. The value of c at the wall is
obtained by setting r = 1, thus

cw = c(x, t) − Pe

4
∂t s − Pe

24
(ζ − u)∂xc. (3.29)

In order to determine an equation for s, we substitute equation (3.29) in (2.3),
and Taylor expand f with respect to the variables cw corresponding to each species,
keeping only the leading-order term:

∂s

∂t
= f (s, c, · · ·) +

∑
∗

{
−Pe∗

4
∂t s

∗−Pe∗

24
(ζ − u)∂xc

∗
}

∂c∗
w
f

∣∣
c∗
w=c∗ . (3.30)

Here the summation indicated runs over all species indexed by the superscript ∗.
Since ∂t s

∗ = f ∗(s, c, · · ·)+ higher-order terms, we may rewrite (3.30) as follows:

∂s

∂t
= f (s, c, · · ·) −

∑
∗

Pe∗

4
f ∗∂c∗

w
f

∣∣
c∗
w=c∗ −

∑
∗

Pe∗

24
(ζ − u)∂xc

∗ ∂c∗
w
f

∣∣
c∗
w=c∗ (3.31)

Equation (3.28) determines the three-dimensional distribution of concentration in
terms of the variables c and s which evolve in time according to equations (3.24)
and (3.31). These equations have an asymptotic validity to terms of O(ε2). This is the
main results of this paper. Equation (3.24) shows that c obeys an advection–diffusion
equation with a source/sink term to account for wall adsorption effects. The mean
concentration is advected by the bulk flow speed u, as in classical Taylor dispersion
theory, corrected by the electrophoretic migration velocity uep . The effective axial
diffusion coefficient D in equation (3.26) is simply the sum of the molecular diffusivity
and the classical expression for the Taylor diffusion coefficient evaluated using only
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Case Ka Kd sm ×103

O 0 0 10.0
I 0.02 0 10.0
II 0.10 0 1.0
III 0.125 0.0001 0.8

Table 1. Parameters values for numerical simulations.

the Poiseuille part of the expression for the axial velocity in equation (3.6). This is
what one might expect intuitively in the limit of slow axial variations. The source
term on the right of (3.24) represents losses to the wall. If the sample is far enough
from the inlet or outlet so that sample concentrations are essentially zero at x = 0
and x = L, then we may integrate (3.24) to arrive at the conservation law

d

dt

[∫ L

0

(c + 2s) dx

]
= 0, (3.32)

which simply indicates that any decrease of a sample component in solution is
accounted for by the corresponding amount adsorbed at the wall. The second term,
proportional to the Péclet number in equation (3.27) is a correction to the wall flux
because the sample concentration is not exactly uniform over the capillary cross-
section. Similarly, the terms proportional to the Péclet number in equation (3.31)
account for the fact that the concentration of each of the species at the wall differs
slightly from the mean concentration at each cross-section.

4. Numerical solutions
We will now investigate the consequences of the equations presented in § 3.2, by

numerically integrating these equations under conditions fairly representative of CZE
in the presence of wall adsorption. It will be seen that these equations provide a
rational basis for understanding many of the qualitative features observed in practice.

The numerical integration was carried out† with a finite-difference method that uses
sixth-order central differencing to compute the spatial derivatives and uses explicit
time marching with the fourth-order Runge–Kutta method. The sample calculations
are for a single species. Zero boundary conditions for the concentrations c and
s are assumed at the lateral boundaries, x = 0 and x = L. For initial conditions a
Gaussian profile is used for c, c(x, 0) = cm(0) exp

[
−(x − x0)

2/(2σ 2
0 )

]
, with cm(0) = 1,

σ0 = 10, x0 = 5σ0 and we assume s(x, 0) = 0. The capillary length is L =104 and the
calculation is stopped when the concentration peak reaches a detector that we will
assume is located at x = xd = 9000 = L − 100σ0. The values of x0 and xd have been
chosen so that the analyte is always localized sufficiently far from the inlet and outlet
boundaries. This ensures that the computation is insensitive to the choice of inlet
and outlet boundary conditions for c. The Langmuir form (2.4) is assumed for the
wall interaction. Four cases are run with values of the parameters Ka , Kd and sm as
shown in table 1. These parameters are chosen keeping in mind that consistent with
the requirement of slow variations, K−1

a ∼ K−1
d � 1, but still small enough to have

† A computer program for one-dimensional flame calculations kindly provided by Professor Luc
Vervisch was modified for the purpose.
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Figure 2. Arrival times of the analyte peak as a function of distance from inlet of the capillary
for numerical simulations using parameter values shown in table 1 (Case O: , Case I:

, Case II: , Case III: ).

observable effects. Further, since the total adsorbed analyte must be of the order of
the amount injected, 2πsmL ∼ cm(0)σ0. The dependence of ζ on s is taken as

ζ = g(s, · · ·) = 1 − s/sm (4.1)

so that (i) ζ =1 if s = 0, (ii) ζ decreases linearly with s, and (iii) adsorption stops
when ζ =0 (at s = sm) which corresponds to neutralization of the charge on the
capillary wall. The Reynolds number, Re is taken to be zero in these examples and
the Péclet number Pe= 100. These conditions are fairly typical in CZE (Landers
1996; Camilleri 1998). Since the electrophoretic migration velocity uep simply results
in a constant increment to the propagation velocity of the band, we take uep = 0 in
these calculations for the sake of convenience.

Adsorption of analytes to channel walls is known to result in altered elution times
for analyte bands (Towns & Regnier 1992). Figure 2 shows this effect. The time of
arrival of the analyte concentration peak at a given location x is shown. In the absence
of adsorption (Case O), the band simply moves with a uniform velocity of unity. In
all other cases, the elution times are increased. This is a consequence of the reduction
in the ζ -potential behind the band, as a result of which the bulk flow velocity, which
is proportional to the axial average of the zeta-potential, decreases with time as well.
In Ghosal (2002b), an ad hoc exponential model was proposed for the zeta-potential
in the wake of the analyte band while ahead of it the value for an uncontaminated
capillary was assumed. This, together with (3.25), was used to derive an analytical
formula for elution times which could be fitted well to experimental data. Here we
have obtained similar qualitative results but without any ad hoc assumptions about
how the zeta-potential is altered. The actual form of the zeta-potential at the instant
the analyte peak reaches the detector is shown in figure 5 for each of the calculations
in table 1. It is clear that the exponential model used in Ghosal (2002b) provides
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Figure 3. Peak sample concentration cm(t) as a function of time t for numerical simulations
using parameter values shown in table 1 (Case O: , Case I: , Case II: ,
Case III: ). The peak concentration shows a rapid decrease with time when wall
adsorption is present, due to the combined effect of analyte loss and enhanced dispersion.

a fair description of ζ (x) only for Case I where the adsorbed concentration is low
enough that saturation levels are not reached.

Figure 3 shows the decrease in the peak value of the concentration cm with time,
t . In Case O the decrease is solely due to the spreading of the band on account of
molecular diffusion and the constraint of mass conservation. In the remaining three
cases, the peak concentration decays due to a combination of dispersion and loss
of analyte to the wall. Clearly, wall interactions lead to a very large decrease in cm.
In many instances this decrease is so large that the concentration falls below the
threshold of detection at the detector window.

In figure 4, the concentration profile at the instant the peak reaches the detector
is shown for all four Cases displayed in table 1. For ease of comparison, the profiles
are normalized so that the maximum value is unity in all of the cases. Clearly, the
narrowest peak is obtained in Case O. In all of the other cases, analyte adsorption
broadens the peak to various degrees. It is interesting to note that in the presence of
adsorption, the peaks take on a markedly asymmetric shape. This is in accordance
with observations in CZE where such ‘eluted peaks’ are considered an indicator of
the presence of strong wall interactions. It is significant that the asymmetry is present
even if Kd = 0. Thus, the analyte desorbing behind the moving plug appears not to
be the primary cause of peak asymmetry. In addition to the ‘eluted peaks’ Case III
shows that the concentration does not quite return to zero after passage of the peak,
but shows a plateau that continues for many profile widths behind the peak. This is
also in accord with a well-known effect in CZE, where it has been noted that in the
presence of significant wall interactions, there is a ‘lack of return to the baseline’ of
the detector signal.

Finally, figure 5 shows the zeta-potential in all four cases at the instant the analyte
peak reaches the detector. The curve ζ = 1 corresponds to Case O (no adsorption).
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Figure 4. Axial profiles of the normalized mean concentration (c/cm), for numerical
simulations using parameter values shown in table 1 (Case O: , Case I: ,
Case II: , Case III: ) at the instant the analyte peak reaches the detector. Note
that in the presence of wall interactions (Case I, II and III) peak shapes are asymmetric. In
the presence of desorption (Case III) the peak has a long plateau behind it, so that the signal
does not return to the ‘base-line’ for a long time after passage of the analyte peak.
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Figure 5. Profiles of the zeta-potential (ζ ), for numerical simulations using parameter values
shown in table 1 (Case O: , Case I: , Case II: , Case III: ) at the instant
the analyte peak reaches the detector.
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From (4.1), s = sm(1 − ζ ) so that the area enclosed by the curves ζ (x) and ζ = 1
between x and x + dx is proportional to the analyte adsorbed in the section of
length dx on the capillary. In Case I the amount adsorbed per unit length decreases
with distance from the inlet. This is because the rate of adsorption is proportional
to the concentration in the band and this concentration decreases with time as the
sample moves towards the outlet. In Case II ζ ≈ 0 behind the sample due to strong
adsorption. In this case, the adsorbed concentration per unit length actually increases
slightly with distance from the inlet. This is a result of the slowing down of the plug
(see figure 2) due to the reduction of u = 〈ζ 〉 with time. As a result the plug takes
a much longer time to pass a fixed point on the wall so that the time available for
adsorption is much greater for downstream points. This effect more than compensates
for the depletion of analyte concentration in the plug. In Case III, each point on the
wall adsorbs analyte as the plug passes over it but subsequently the analyte is slowly
released back into the buffer due to desorption. This accounts for the ‘recovery’ of
the zeta-potential in the wake of the plug. It also accounts for the very long plateau
behind the concentration peak in figure 4 for Case III. As a result of this recovery,
〈ζ 〉 is much larger in Case III than in Case II so that elution time delays (figure 2)
are less pronounced.

5. Conclusion
The problem of the anomalous dispersion of analytes in CZE due to wall

interactions was investigated using a rational approximation. The analysis invoked
the following assumptions:

(a) The Debye layer thickness is very much smaller than the capillary radius, so that
the Helmholtz–Smoluchowski slip boundary conditions are adequate for describing
the coupling between the electric field and the fluid flow.

(b) The capillary length L0 � a0Pe, where a0 is the capillary radius and Pe is the
Péclet number of the slowest diffusing species that has significant wall interactions.

(c) The characteristic chemical time scale defining the adsorption rate is comparable
to the transit time across the capillary.

(d) Any explicit axial variations in the zeta-potential, if present, have a characteristic
length scale much larger than a0. Any explicit temporal variations in the zeta-potential
or applied pressure head, if present, are slow compared to the diffusive time across a
capillary radius.

The principal results of the paper are equations (3.28), (3.24) and (3.31). These
coupled partial differential equations for c and s must in general be solved numerically.
However, since they involve only one space variable they represent a considerable
simplification over the full three-dimensional formulation.

This reduced system of equations was solved numerically using parameter values
that would be typical for CZE. It was found that the solution displayed most of the
characteristics exhibited by CZE systems in the presence of wall interactions that are
known from empirical observations. In particular, the presence of wall interactions
results in increased elution times, peak broadening, an asymmetrical peak shape
often referred to as ‘peak tailing’ and ‘lack of return to the baseline’ of the signal
after passage of the primary pulse. It would be of interest to make a quantitative
comparison of these predictions with experimental data. This has been attempted
in some cases (Ghosal 2002a, b) using semi-empirical models, for which the present
paper provides a rational basis.
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Appendix. Correction to the lubrication approximation
The lubrication approximation is the lowest-order approximation to (2.6)–(2.8). At

the next order, (2.7) and (2.8) give

1

r

∂

∂r

(
r
∂u1

∂r

)
− ∂p̃1

∂X
= Re

[
∂u0

∂T
+ u0

∂u0

∂X
+ ṽ0

∂u0

∂r

]
, (A 1)

∂p̃1

∂r
= 0. (A 2)

Equation (A 2) implies that p1 = p1(X, T ); further the right-hand side of (A 1) may
be evaluated using the lower-order solution (3.6) and (3.7):

1

r

∂

∂r

(
r
∂u1

∂r

)
= ∂Xp̃1 + Re[2r4(ζ0 − u0)∂Xζ0 + 2(1 − r2)∂T u0

+ (2r2 − 1)(∂T ζ0 + 2u0∂Xζ0 − ζ0∂Xζ0)]. (A 3)

From the boundary condition (2.6),

u1|r=1 = ζ1(X, T ). (A 4)

If we integrate (A 3) using boundary condition (A 4) and the requirement that there
must not be a singularity at r = 0, we obtain

u1 = ζ1 + 1
4
(r2 − 1)∂Xp̃1 + Re

[
1
18

(r6 − 1)(ζ0 − u0)∂Xζ0 − 1
8
(r4 − 4r2 + 3)∂T u0

+ 1
8
(r2 − 1)2(∂T ζ0 + 2u0∂Xζ0 − ζ0∂Xζ0)

]
. (A 5)

To obtain the flux, we integrate over the cross-section,

u1 =

∫ 1

0

2ru1 dr = ζ1 − 1
8
∂Xp̃1 − Re

[
1
24

(ζ0 − u0)∂Xζ0

+ 1
6
∂T u0 − 1

24
(∂T ζ0 + 2u0∂Xζ0 − ζ0∂Xζ0)

]
. (A 6)

Equation (A 6) can be solved for ∂Xp̃1;

∂p̃1

∂X
= 8(ζ1 − u1) − Re

[
1
3
(ζ0 − u0)∂Xζ0 + 4

3
∂T u0 − 1

3
(∂T ζ0 + 2u0∂Xζ0 − ζ0∂Xζ0)

]
. (A 7)

If we average both sides over the length of the capillary and keep in mind that the
pressure at each end is specified, so that p̃1 is zero at the inlet and outlet, we obtain

u1 = 〈ζ1〉 − 1
6
Re

du0

dT
+ 1

24
Re

d〈ζ0〉
dT

. (A 8)

In arriving at equation (A 8) we have set the integrals of the total derivative terms
to zero. This is justified if εL � 1, that is, the capillary is very much longer than the
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characteristic width of the analyte band. On using equation (3.8) in (A 8) we obtain

u1 = 〈ζ1〉 − 1

48
Re

d

dT

(
�p

L

)
− 1

8
Re

d〈ζ0〉
dT

. (A 9)

This is equation (3.11) in § 3.1.1.
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