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Turbulent wakes are known to develop self-similarly sufficiently far downstream from obstacles that
generate them. It has long been assumed that the spreading rate of the wake in the self-similar
regime is independent of the details of the body generating the wake, being dependent only on the
total drag(or momentum deficjt This assumption seems to be in contradiction with some recent
experiments. In this study we attempt to complement these experimental investigations through a
numerical study of a time-developing wake. A numerical study has the advantage of eliminating
many of the uncontrolled factors present in experiments and allowing precise control of initial
conditions. Large-eddy simulations employing the recently developed dynamic localization model
are used to extend previous results from direct numerical simulations. The large-eddy simulation
results are compared to the direct numerical simulation database, wherever such comparisons are
feasible, as a check of the method. Like the experiments, the large-eddy simulations suggest that
non-unique self-similar states, characterized by different spreading rates and turbulent statistics, are
possible and that they can be maintained for significant time periods. The study also demonstrates
the predictive capability of the dynamic localization subgrid model. 1897 American Institute of
Physics[S1070-663(197)02006-0

I. INTRODUCTION obtains a wider class of self-similar solutions that are no
A turbulent flow i id to b if-simil h longer “universal.” Thus, for a plane wake, these solutions

Il of _tur tu tent ?W IS Sa't_ Od € sed-smlu arw etn some %r will depend on the nature of the obstacle and not just on the

all ot s statistical properties depend only on certain combly ., drag. These conclusions seem to be in agreement with

nations of the independent variables rather than on each in- . Y . 3
. o . .the experiments of Wygnanslégt al© and Marasliet al.

dependent variable individually. The consequence of this i

that the number of independent variables in the problem iZ|owever, conditions in experiments are difficult to control

reduced, thus greatly facilitating its solution. Geometrically,prec'seIy and some doubt remains about whether the results

a self-similar flow possesses a certain symmetry: for exampl@d'cate the existence of multiple self-similar states or if this

the flow pattern on any two cross sections perpendicular to pan artifact of exper_lmental uncertglntles. , )

given axis may be identical except for a scale factor. The. To address this issue further, direct numerical simula-
property of self-similarity has been used on many occasiond©ns (ONS) of plane wakes have been generated by Moser
in fluid dynamics to derive elegant solutions to otherwise?nd Roger‘fsand Moser, Rogers,.and Ewifigsuch numeri-
very difficult problems(such as the structure of turbulent cal simulations are frec_a from various unco_ntrollable ex_trane—
boundary layers, jets and wakeRecently, Geordepre-  OUS factors that complicate the mterpretauon of experiments
sented a critical analysis of the self-similarity argument in@nd should complement the experimental results already
the context of certain apparent discrepancies of self-similafvailable(see Refs. 2 and 3, and references theréitow-
solutions with experimental results on jets and wakes. H&Ver, such simulations are very costly since all scales of tur-
argued that in the traditional analysis, in addition to the asbulent motion must be accurately resolved. In practice this
sumption of self-similarity, one often invokes additional re- limits the Reynolds numbers and the extent of flow evolution
strictions inspired by the dictum “turbulence forgets its ini- that can be simulated. This suggests that large-eddy simula-
tial conditions.” For example, in the case of the turbulenttion (LES) might be a better tool than direct numerical simu-
plane wake one requires that the growth rate sufficiently fatation to study high-Reynolds-number fully developed wake
from the source can depend only on the momentum deficit ofurbulence over long evolution times, particularly if small-
the wake(which is proportional to the drag on the obstacle scale information is not desired. In LES one explicitly solves
producing the waKe Dimensional analysis then implies a coarse-grained version of the Navier—Stokes equations.
“universal” solutions that do not depend on the nature of theThe collective effect of the small scales on the large scales is
obstacle or the details of the initial conditions. George artaken into account through a “subgrid model.” Although
gued that when such additional restrictions are removed, oneES can be computationally much less expensive, it has the
disadvantage that it leaves open the possibility of significant
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In order to achieve the longest possible simulation of a2) The subgrid model parametdt'Smagorinsky coeffi-
high-Reynolds-number self-similar plane wake we have re- cient”) is a function of space and time and automatically
sorted to LES of the temporally evolving flow, as was done  adjusts itself to the intensity of the turbulence. In par-
in the DNS. First, the LES methodology is validated by com- ticular, it goes to zero near walls and vanishes in those
parison to existing DNS for cases that are less computation- regions of space and time where the flow is laminar.

ally intensive. The limitations of the DNS can then in turn be The present study, in addition to investigating the issue

a_lddrTs;ed b_y the #_se of nelw LES results inflargﬁr computas self-similarity in plane wakes, also provides another test
tional domains. This complementary use of both LES an%f the predictive capability of the dynamic localization

DNS bolsters confidence in the simulation results and faciliy, 4e| This includes both the ability to predict turbulent sta-

tates better understanding of the self-similar behavior of th@.tics as well as flow structure. In Moser Rogers, and

plane wake. _ Ewing? forcing was found to significantly affect both statis-
Three DNS of temporally evolving plane wakes have(ics and flow structure in the plane wake, with forcing in-

been documented in Moser, Rogers, and Eﬁ'f‘-gﬁese creasing the level of organized large-scale motions in the
wakes differ from each other in the level of initial two- fioy, Since it seems that these differences in flow structure
dimensional turbulent fluctuations. The “unforced” case is gre jinked to the differences in turbulent statistics it may be
initiated from two realizations of a fully developed turbulent ggsential that the subgrid model preserve the character of the
boundary layer with no added disturbances. In the othefjitered vorticity field for accurate prediction of the statistics.
“weakly forced” and “strongly forced” cases, additional The |ocal character of the subgrid model employed in this
two-dimensional fluctuation energy has been added to thgork would seem to offer a greater likelihood of achieving
boundary layer turbulence. This is achieved by multiplyingthis. The level of correspondence between the vortex struc-
the streamwise and cross-stream velocity components ass@res in the LES and the DNS is also of interest for flow
ciated with the two-dimensional Fourier modes in the com-control and understanding mechanisms of turbulent mixing.
putation by factors of 5 and 20, respectively. The resulting In Sec. Il certain general properties of plane wakes are
evolution of the unforced and weakly forced cases showseviewed and the problem to be solved numerically is de-
convincing evidence of self-similar evolution, although thefined. In Sec. Il the computational methods used, including
growth rates and Reynolds stress levels for the two cases atiee subgrid model, are briefly discussed. The LES results for
different. The strongly forced case, on the other hand, showshe unforced wake are presented and compared with the DNS
irregularities in the shapes of mean velocity and Reynoldglatabase in Sec. IV. LES computations of the forced case in
stress profiles and exhibits at most a short period of approxitwo different domain sizeghe smaller for comparison to the
mate self-similar evolutiofwith a very high growth rate and DNS, the larger to address limitations of the DNS and to
large levels of Reynolds stress study the long-time evolution of the forced casee consid-
The flow structure in this strongly forced case has arered in Sec. V. In the concluding Sec. VI, the results and
underlying pattern of a few large-scale motions and it wagheir significance are discussed.
speculated in Ref. 5 that the poor self-similarity resulted
from an inadgquate sample of large-scale Furbu[ent eddies i) FORMULATION OF THE PROBLEM
the computational domain. In order to confirm this, a LES of
nominally the same flow in a domain that is twice as large in  In a temporally developing wake the flow is statistically
the streamwise direction and four times as large in the sparflomogeneous in the streamwisg @nd spanwise2) direc-
wise direction has been generated and compared to bo#fPns and inhomogeneous in the cross-stregindirection.
DNS and LES of the small-domain case. Of primary interest' N& governing equations are the incompressible Navier—
is whether a self-similar state does indeed exist in thisStokes equations with periodic boundary conditions and
strongly forced flow and what the growth rate and Reynold<- In _they direction the domayn is infinite and the velocity
stress levels are if such a period exists. This allows us t§€ld is assumed to asymptotically approach the free-stream
better address the issue of whether or not multiple initial-VéloCity, which can be taken as zero in a suitably chosen
condition-dependent self-similar states exist for the turbulenfeférence frame. This flow becomes equivalent to the physi-
plane wake. cally more relevan_t _spatlally d_eveI(_Jplng wake in thg limit of
The LES is performed using a fully spectral code and &2 Small wake deficit. If one imagines a "box” being ad-
recently developed subgrid model known as the “dynamic/ected downstream at the “free-stream” velocity in a spa-
localization model”(DLM). In a previous papétthe theo- yally_developmg wakg, then the motion of the flu!d in the
retical development leading to the dynamic localization'Maginary box approximates _a_temporally developing wake.
model for large-eddy simulation was presented. The method N® Integrated mass flux deficit
has been successfully applied to isotropic turbulérce, +ee
channel flow? and the flow over a backward-facing stefS. m== fo SU(y)dy @

Two attractive features of this model are: ) ) )
] ) . is conserved in a temporally developing wake, as opposed to
(1) The magnitude of the eddy viscosity does not need to behe momentum flux deficit
prescribed in armd hocmanner but the algorithm itself .
chqoses an thl!'num value based on a certain well- Ly = _f (U,+8U(y))dU(y)dy, 2
defined optimization procedure.

—oo
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which is conserved for a spatially developing wake. Clearly,The “test-level” filter-width is A (A>A) andG(x,y) is the
if the mean velocity deficibU is small compared to the free test filter kernel.
stream velocityJ., , thenu, ~U._ u. A suitable scale for the The second method, DLM, is applicable to arbitrary ho-
velocity is the initial centerplane velocity deficit mogeneous flows but imposes the constr@lgt0. It is the
6Uy=—(6U(0));=q and a suitable length scale jig/ 6U,. more general of the two but requires more computation. The
The associated time scale ig(8U,)2. Most of the results constraintC=0 can be relaxed. This is done either by intro-
given below are quoted in these units. ducing an additional equation for the subgrid eneig{Ref.

6) or by adding a “stochastic backscatter” tefrtn DLM

one obtaingC(x,t) as a function of position at each time-step

Ill. COMPUTATIONAL METHODS by solving an integral equation

The numerical method used is a spectral method in vor- C(x)=
ticity variables. Both the velocity and vorticity are periodic
in the x andz directions and can therefore be expanded in avhere the suffix ‘“+" indicates the positive part and
basis of trigonometric functions for these variables. Fhe

F) + f ZyCydy| | ®)

direction is somewhat more difficult to deal with since the  f(x)= ;i (X)L (X)

domain is infinite iny. One method is to choose a basis of a(X) ()" J

functions that have an infinite suppgguch as the Jacobi

polynomials coupled with a mapping to the infinite intepval —,Bi,-(x)J Lij(y)G(y,x)dy|, (7
for the y direction!! However, here we use an artifice that

results in a simpler numerical code. We take advantage of Hxy) TEANXY) T TEA(YX)— T (X,Y) ®

the fact that in a wake the vorticity field is much more con-

fined in they direction than the velocity field. One then .

expands the vorticity in a trigonometric seriesyirdefined TEAXY) = a;j(X) Bij(Y)G(X,Y), 9

over (Ymin,Ymax With periodic boundary conditions. This is gng

permissible provided that the vorticity is narrowly confined

aroundy=0 and effectlvely de(':ays.to zero at the poundarles %é(X,y):ﬁij(X)Bij(Y)f G(2,X)G(zy)dz (10)

Ymin @nd Ynax.- The velocity field is not so confined and

cannot be represented |n terms qf these tr_igonometric fungn  these expressionsG(x,y) is the “test filter,”

tions. But once the vorticity field is determined, the correct Ao i )

velocity field may be obtained by adding a potential “cor- @i = —24%|S|S;, Bij=—2A .|S|Sij , andLy; is the Leonard

rection” to the periodic velocity field so as to match the term. The method of numerically solving the integral equa-

boundary conditions ag= = . Further details of the com- tion to determine the coefficien€ has been described

putational method may be found in Corral and JimeXez. elsewheré. The test filter-width in these computations was
We use the “dynamic method” for computing the coef- taken_to be twice the.grid-fil_ter widtlA=2A, and a “top-

ficient C(x,t) in the generalization of Smagorinsky’s subgrid hat” filter was used with a Simpson’s rule quadrature.

model

ay(X) ay(X)

- IV. VALIDATION OF THE LES FOR THE UNFORCED
7= 38 Tie= — 2C(x, 1) A?[SIS (3) WAKE

where 7;; is the subgrid stressgij is the resolved rate of In this section we attempt to establish confidence in the
strain, |S[2=2S,;S;, and A is the LES filter-width(taken prgdlctlve capability of the Sul‘J‘ngd mod”el by reproducing,
equal to the grid spacingWe will consider two variants of USiNg LES, the results for the “unforced” plane wake gen-
the dynamic method for determinir@. The first, the Dy- €rated by DNS in Moser and Rogémand Moser, Rogers,
namic Model(DM), can be considered as a special case of"d Ewing? The initial conditions for the DNS were gener-
the more general DLM discussed below for flows that areated by taking two realizations of “turbulence over a flat

homogeneous in one or more directions. For the wake rovPIate” from DNS data generated by Spa’rérand_“fusing”
the coefficientC is considered a function of andt only in them together to produce a wake. Physically this corresponds
DM and is given by to a situation in which two independent boundary layers exist

on either side of a rigid plate and the plate is instantaneously
(mi;Lij)xz “dissolved” without disturbing the surrounding fluid. This
(MM’ @ initial DNS data field was then interpolated onto the coarser
. LES grid to generate the initial conditions for the LES. All
where the angular brackets denote averaging over the hoMgse parameters in the LES described in this section were
geneousx-z planes. Herel;;=u;u;—u;u; is the Leonard chosen to correspond to those used in the DNS.
term andmy, =A2§ST,<—AZ|§IJST;, whereU; is the filtered The LES reported here were performed on a grid of size

velocity and the ~ denotes the “test filtering” operation: ~ Nx=64, N, =48, andN,=16. By contrast the DNS required
up toN,=512,N, =195, andN,= 128 modes. The half-size

C(y,t)=

Al of the y-domain was set t&/y=16. To compare the LES
f(x)—J Gxy)f(y)dy. ®) results to the DNS, all DNS data must first be “filtered” to
Phys. Fluids, Vol. 9, No. 6, June 1997 S. Ghosal and M. M. Rogers 1731
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FIG. 1. The square of the wake width as a function of time using DLM —

) ' FIG. 2. The product of the wake width and the maximum velocity deficit as
DM---; No-model - - - -; filtered DNS@®.

a function of time using DLM —; DM---; No-model - - -; filtered DNS
0.

the same resolution as the LES. This is done by truncating

the DN ta in Fouri toth f . _
re‘taain e(? i?\ati E'}nLEOéJ r:cirr StE:(CZn?j 5 352&;”:”;%?& medebS(éum) as a function ofr. All curves exhibit plateaus dur-
’ ing the self-similar periods. Note that the Reynolds number

direction, the DNS data are interpolated onto the coarse =boU, /v is constant and just under 2000 in the self
. - . . . . . - = m V -
LES grid. This filtering procedure is applied to the initial similar period becausg/v=2000. The results of all the LES

conditions as well as to all DNS data with which we wish to tati bl Il with the filtered DNS. A
compare the LES results. The “filtered DNS” represents theS0MPUtalions agree reasonably Weill wi € mitered * '
omewhat surprising result is that even the LES with zero

theoretical best that can be achieved by any LES. Since the : L -
mean velocity is given by the,=k,=0 Fourier-mode, the eddy viscosity gives a reasonable prediction for the spread-

mean profile is unaffected by filtering -z planes. Also, IFnlg rate deﬁp'tt? thefstlrr:wul_atl?n :)elng grc;lsslyf_ur;gerrzsollvizd.
since the mean profile varies very little over a single grid- ow visualization of the Instantaneous Tow Tield and piots

length, filtering in they direction does not have any observ- of energy spectra show large accumulations of small-scale

able effect on the mean velocity. This, however, is not thefluctuq:uons at th_e smallest .resolved scales for t-h|s no-
odel” case, as is expected in an underresolved simulation.

case for second-order statistics of velocity and vorticity an(f| thi d ¢ affect th h
there explicit filtering must be applied to the DNS data for Owever, even his gross error ,96.8 no ”a ect the grow
comparison with the LES. The LES with DM took about rate much except to ma}ke I more W|ggly. This is in sharp
11 minutes of CPU time for the entire simulation to be Cc)m_contrast to past experience in isotropic turbulence. In that

pleted. For the DLM the CPU time depended on the level oiﬂow’ the absence of an eddy-viscosity would prevent energy

convergence required for the solution of the integral equa.—decay of free turbulence and _make a stez_;\dy state |mp035|_ble
forced turbulence, rendering comparisons with experi-

tion. We measured the degree of convergence by the rm ) :
error in satisfying the integral equation normalized by thement_S impossible. . , .
maximum value of C), where() denote averaging over Figure 3 shows the mean velocity profile plotted in self-
z planes. When it was required that the error as defined
above should not exceed 1f) the DLM used about 18 min-
utes of CPU time. To test if this level of convergence was
adequate, the simulation was rerun with the convergence cri- '
terion set at 10°. There were no observable differences in
any of the computed statistics. For comparison, the high
resolution DNS of the same flow over the same physical time
interval by Moser and Rogétsequired about 200 CPU
hours. All computations were performed on a CRAY C90.
The gross features of the wake are characterized by the 298|
maximum wake deficibU ,, of the mean velocity profile and
the wake half-widthb. The half-width is defined here as the
distance between the two points at which the mean velocity
deficit is half its maximum value. Figure 1 shows plotted
as a function of the dimensionless time=t(8Uy)%/ u for

)/ 8Un

the LES using both the DM and DLM models, the filtered 45 A0 05 0.0 05 10 15
DNS, and the LES with the subgrid model turned off. The vt

width grows as b~ Jt in the self-similar region  Fig. 3. The mean wake velocity deficit in self-similar coordinates using
(7~=50-100) as expected. Figure 2 shows the producbLM —; DM--; No-model - - - -; filtered DNS®.
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FIG. 4. Normalized velocity statistics in self-similar coordinates using DLM —; DM---; No-made! -; filtered DNS®. The figures arda) (uz), (b)
(v?), (0) (w?), and(d) (uv), and all curves shown are from the “self-similar period” of each computation.

similar coordinates U, =6U/6U,, and y,=y/b for fore, the angular brackets denote averaging averplanes.
7~50-100. In all cases very good self-similar collapse isThe agreement of both the DM and the DLM predictions
observed(even with the subgrid model turned pffThus,  with the filtered DNS is seen to be good. The quality of the
like the growth rate, the mean velocity profile is quite insen-predictions is significantly degraded when the model is
sitive to the subgrid model. turned off, in which case the magnitudes of the enstrophy
The second-order velocity statisti€si?), (v2), (w?),  components are about four or five times the corresponding
and(uv) normalized by U )2 are shown for several times filtered DNS levels. Vorticity statistics are a sensitive mea-
during the *“self-similar period” in Fig. 4. Herel, v, and  sure of the scales close to the threshold of the resolution of
w are the velocities in the, y, andz directions, respectively, the LES. The fact that even vorticity statistics are captured
with the mean velocity subtracted out. The angular bracketby the LES suggests that all of the resolved scales, and not
denote averaging over-z planes. In all cases it is observed just the lowest wave number modes, are faithfully repre-
that both the DM and the DLM predict the filtered second-sented in the simulation. Thus, we use vorticity statistics as a
order statistics well. Except for thgiv) profile, the quality  “quality indicator” of the LES rather than as a quantity of
of the predictions deteriorates if the model is turned off. Thepractical importancénote that much of the vorticity resides
better agreement for th@uv) profile is expected since it is at subgrid scales and the levels found in the LES or filtered
directly linked to the mean velocity profiléU(y) through  DNS are much less than those observed in the DNS

the x-component of the momentum equation and it has al- In Figs. 4 and 5 it is apparent that the self-similar col-
ready been seen thalU(y) is insensitive to the subgrid lapse is not perfect but that there is a systematic variation
model. between the curves at different times in the simulation, even

The second-order vorticity statisti¢so2), <"’§>' (w?),  when scaled in self-similar variables. This is the case not
and (wyw,) normalized by Rg 5Uﬁ1 are shown in Fig. 5, only for the LES, but also for the filtered DNS. This is an
also at times during the ‘“self-similar period.” Here,, artifact of the filtering procedure itself and can be understood
wy, andw, are the vorticities in the, y, andz directions, in the following way. The flow evolves self-similarly at con-
respectively, with the mean vorticity subtracted out. As be-stant Reynolds number Reb(8U,,)/v (see Fig. 2 in the
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FIG. 5. Vorticity statistics in self-similar coordinates using DLM —; DM---; No-model - -; filtered DNS®. The figures aréa) (w,?), (b) (wyz), (c)
(0,%), and(d) (w,w,), and all curves shown are from the “self-similar period” of each computation.

self-similar region but the length scales increase in timeat a time during the self-similar period are presented in Fig.
Thus, as the flow evolves, the energy spectrum shifts to thé over anx-y plane. It is seen that Fig.(§ and Fig. &d)
left. Since the grid size is held fixed, this implies that more(LES with mode] bear an overall resemblance to Figb$
and more of the energy becomes “resolved” as the spectrunffiltered DN9 in the sense that they have a similar number
shifts to lower wave numbers pdst27/A. Therefore the of “eddies” of approximately similar size and shape. How-
resolved part of the second-order statistics increases witdver, Fig. §e) (LES without modél looks qualitatively dif-
time. This is precisely what is observed in the LES and fil-ferent from Fig. 6b) in that it has a profusion of poorly
tered DNS data and is responsible for the systematic increasesolved small-scale structures. A similar statement can be
ing trend during the self-similar period. The problem heremade about the other flow variables.
could be remedied by adding the subgrid part of the stress, In summary, mean normalized velocity profiles plotted
that is by plotting{uv) + 71, instead of{uv). This cannot be in self-similar coordinates are insensitive to the choice of
done, however, for the turbulent intensitias’), (v?), and  subgrid models. The prediction of the self-similar growth of
(w?) because the diagonal components of the subgrid stregee wake width is improved by the subgrid model, but the
T11, T2, and 733 are absorbed into the pressure and notresults with no model are nevertheless good. Second-order
modeled in the present LES. They could be obtained in aelocity and vorticity statistics are predicted well by both the
more elaborate model such as the DLM with theDM and DLM, but the predictions of these statistics without
k-equatiofi but in this study we have used the simpler ver-a model are poor. The flow structures in the LES have a
sion of the DLM that models only the deviatoric part of the strong visual resemblance to those of the corresponding fil-
stress. tered DNS, but this is not the case if the LES is performed
In addition to obtaining quantitative predictions, one alsowith no subgrid model. The LES results in a very significant
hopes to gain some qualitative understanding of the largesavings in CPU time over the corresponding DNS. The re-
scale flow structures from an LES. Thus, it is of interest tosults presented here suggest that LES can provide accurate
see if the model is able to generate structures that look reapredictions for turbulent free shear flows when information
istic. As an example, typical contour plots of thevelocity  related to small-scale structures is not required.
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wake: @ DNS, --- DLM LES, - - - - no-model LES, — DLM LES of the
forced wake extended to the larger dom@ipper curvg and — DLM LES

of the unforced wakélower curve.

forced case considered here, both the streamwise and cross-
stream velocity fluctuationsu( and v') of the two-
dimensional Fourier modes were multiplied by a factor of 20
at =0. This amplification is large, increasing the initial
disturbance energy by an order of magnitude. The initial
conditions for the corresponding LES computation were gen-
erated by filtering the evolved DNS field at=9.56. This
field was chosen rather than thatrat 0.0 to allow the initial
cusped mean profile to smooth out somewhat before trying to
resolve it on the LES grid. The subgrid model used is DLM.
Although this is computationally more expensive than the
DM, it is preferred because of its wider applicability.

T 11 1 11 1~ 71711t 1+ 1 rrr 17 17 7 1T
T

A. Reproducing the DNS results

FIG. 6. Contour plots of streamwise velocity fluctuatiorior (a) DNS, (b) . . . .
fitered DNS, (c) DLM LES, (d) DM LES, and () no-model LES at The square of the wake width as a function of time in the

7=71.7. Tick marks are at2/ 6U,. DLM LES is shown by the dashed line in Fig. 7. The size of

the LES isN,=64, N,=64 or 96,N,=16, andY, ranges

from 14.0 initially to 64.0 at the end of the simulation, where
}:/Rg’:\IAAFL(-)rFEg:\Il\gE SELF-SIMILAR STATE RESULTING Ny 3 Ny,. andN, are t.he number pf modes in th<e y, and

z directions, respectively, andly is the half-width of the

In this section we investigate the time evolution of ay-domain.(The DNS uses up tdN,=600, N,=260, and
“forced” wake that has the same mass flux deficit as theN,=160) The LES results agree well with the DNS up to
“unforced” wake in the previous section. Using LES, we the point where both computations become constrained by
first attempt to reproduce the DNS results for the “stronglythe computational domain size. After~65 both the DNS
forced” wake of Moser and Rogetand Moser, Rogers, and and the LES computed in the same domain size exhibit de-
Ewing® Next we attempt to extend the DNS results in time creasing wake widths instead of reaching the expected sus-
with a new LES simulation in a larger computational domaintained self-similar growth. The LES is also no longer as good
in an effort to observe a definitive self-similar regime. In theat predicting the wake width after this point, with the LES
DNS no sustained self-similar period was achieved for thewidth decreasing somewhat more rapidly than that of the
strongly forced wake, although there was a fairly brief periodDNS.
of approximate self-similarity that was used to generate As with the unforced case, contours wivelocity show
time-averaged similarity profiles. good agreement between the LESg. 8(c)] and the filtered
The initial conditions used in the DNS of the “forced” DNS [Fig. 8b)]. When no subgrid scale model is used the

wake were generated from the same two turbulent boundargomputation has an excessive level of small-scale structure
layer realizations used for the unforced flow, but with addi-owing to inadequate energy dissipatidtig. 8(d)]. Note that
tional two-dimensional disturbance energy added to them. lat the time shown £=26.3), the sample of large-scale ed-
order to maintain at'? spreading rate, all the two- dies in the computational domain is becoming somewhat
dimensional Fourier modes in the computation were amplilimited. As the wake continues to spread it is thus quite
fied instead of just a few particular wavelengths. For theprobable that the computational domain size will become
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be integers, then the periodic doubling of the streamwise
direction will introduce new wave numbers that are odd mul-
tiples of one half; these wave numbers have zero energy. To
break the initial periodic symmetry these Fourier modes
must be seeded with some energy. While adding energy to
any single one of the wave numbers would break the sym-
metry, the time required for nonlinear interactions to transfer
energy to the rest of them would be long and the size of the
large-scale motions would approach the size of the compu-
tational domain before the spectra smoothed out. In order to
minimize this transient development time we have chosen to
initialize energy in nearly all of the newly generated wave
numbers. This has been accomplished by simply taking the
disturbance energy in wave numbegrand putting the same
energy(randomizing the phase of the disturbanicethe new
wave numbek,+ 3. The only exception is thi&,= 3 wave
number, which does not initially receive any energy from the
k,=0 mode. After this, the entire field is rescaled to have the
same disturbance energy density as the original computation.
The same procedure is used in the spanwise direction al-
though since the domain is four times as large, the content of
T rrrr T T T T T T T rToa . 1 1 3 . .
z k, is propagated t&,+ 3, k,+ 3, andk,+ 3 (again with ran-
domized phase for each new made

The initial flow field generated by the above procedure is
thus unphysical, unlike the initial field used for the original
computations, which were generated from DNS of a turbu-
lent boundary layer. However, it is hoped that this flow will
p be similar to the previous computation since the initial en-

e L 2 o e S ML A e e e e e e B B ergy spectra, mean profiles, relative importance of two-

* dimensional disturbances, and other features are the same
FIG. 8. Contour plots of streamwise velocity fluctuatiorior () DNS, (b) between the two f|OW$the mean VeIOC|ty pI’OfI|eS are iden-
filtered DNS, (c) DLM LES, and(d) no-model LES for the forced wake in tical). The correspondence between the results from this new
the smaller domain at=26.3. Tick marks are at2/5U,, solid contours  simulation and the previous forced simulations uprte35
are positive, dotted contours are negative, and the contour level ii)rovides some evidence that this is indeed the ¢sese, for
0.105U,. .

example, Fig. Y.

As with the original forced LES calculation, the initial
inadequate and the simulation will no longer be a good repfi€ld for the large-domain LES computation was generated
resentation of an unbounded turbulent flow. (using the above procedyriFom the DNS field atr=9.56.

In order to demonstrate that the turbulence in these twd "€ large-domain LES was begun witt, =128, N, =64,
computations is constrained by the computational domaifNz=64, and Yo=14. The y-domain is periodically re-
size (rather than simply being in a transient non-self-similarMeshed, increasing boy, andN, in such a way as to keep
state, another LES computation in a domain with twice the th€y-resolution approximately constant. The choicergfat
streamwise extent and four times the spanwise extent of th@ach remesh is such that it is large enough to contain all the
computations described above was performed. It should b¥Orticity in the flow but not so large that CPU time is wasted
noted that performing a DNS in this expanded domain size i§omputing regions of little activity.

unfeasible with the computational capabiliies currently  The evolution of the square of the wake width for the
available. LES in the extended domain is shown in Fig. 7. It shows

significant deviation from the previous computation beyond
7~35 and achieves a sustained period of linear growth, un-
like the forced case in the small domain. It is interesting to
Generating the initial conditions for the expanded-note that the growth rate during this apparently self-similar
domain computation requires some care. Ideally we woulgeriod in the large-domain case is about the same as that
like to be simulating the same flow, but simply replicating during the brief approximately self-similar period of the
the periodic flow field used previously will not change the original LES and DNS computations, although the “virtual
flow evolution at all since the initial periodic symmetry will origins” of the flows are differenti.e. the width curves are
be maintained by the Navier—Stokes equations. It is thuparallel but shifted vertically relative to each other in Fig. 7
necessary to break this symmetry in the periodically ex-This difference in virtual origins of the flows is presumably a
tended initial conditions. Considering the streamwise direceonsequence of the initialization procedure. Because the
tion, if the initial computational wave numbers are scaled tdarge-domain computation does achieve a sustained linear

L B B B A D M R B B B e

B. Extending the DNS results to a larger flow domain
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a function of time:® DNS, --- DLM LES, - - - - no-model LES, — DLM e forced (large-domain at various times during the pero

LES of the forced wake extended to the larger donfling curve, and — 73<7<300 and for® the unforced flow atr=62, 72, and 86.
LES of the unforced wake using DLN&hort curve.

_ ) o times during the period A7<300. The circles for the un-
growth period of the squared wake width, it is likely that the forceqd case are taken from three times during the self-similar

previous computations were indeed constrained by the sizgariog. It is seen that the velocity profiles at different times
of the computational domain by~ 65 if not sooner. _ for the forced case collapse onto a single curve as they do for
‘The product of the wake width and centerline velocity {he unforced flow examined previously. Furthermore, even
deficit for the large-domain LES is plotted along with the thoygh the forced wake has a significantly different growth
previous LES and DNS results in Fig. 9. The product is quiteate the mean velocity profilavhen plotted in self-similar
constant beyond~50, consistent with self-similar evolu- cqordinateshas the same form as the corresponding profile
tion. In the original LES and the DNS the product is not asfrom the unforced case. There is, however, a small lateral

constant. shift in the forced mean profile relative to the unforced case

It should be noted that although the large-domain forcedpat results from a shift present in the initial conditidasd
LES and the unforced LES both exhibit sustained periods ofajintained by the Navier—Stokes equatjorihis comes

apparent self-similar evolution, these self-similar periods arg\hout as a result of the initialization procedure used, which
characterized by markedly different growth rates. The comypyglves large amplification of particular modes and their
putations are thus indeed supportive of the idea that altemasropagation to nearby uninitialized Fourier modes. This uni-
tive initial condition-dependent, self-similar states are POSyersality of the mean velocity profile shape is consistent with
sible as suggested by the analysis of Gebrgad the the experiments® and the arguments by Georjes dis-
experiments of Wygnanslét al?> and Marasliet al® Two- cussed in Sec. I.
dimensional forcing is seen to result in a sustained significant  The linear growth of the squared wake width in Fig. 7
increase in wake growth rate. The linear region in Fig. 7 isappears to begin at~75 and continue untit~ 220, after
well approximated by which the growth rate appears to increase further. The col-
b2(S5U )2 (8Uq)? lapse of the scaled mean velocity profiles is good throughout
Wz (t=to), (1) this period and it thus appears that the flow may be evolving
self-similarly during this period. Reynolds stress profiles at
wherea=0.26,t5= 3.1 in the unforced case bat=1.02 and  times varying fromt=73 to =300 in the large-domain
to=—5.9 in the forced case. The dimensionless growth ratgorced LES computation are shown in Fig. 11. The different
B used in Moser, Rogers, and Ewihgan be calculated from  curves correspond to the same times used in Fig. 10. Al-
a by though the collapse of the curves is greatly improved by
P using the self-similar scalings, t{e?), (v?), and lower half
B= > b(oU.) (12 of the{uv) profiles show a systematic decrease in magnitude
m until about 7=220, when the growth rate appears to be
resulting in 8=0.13 and 8=0.54 for the unforced and changing. This suggests that the flow is not yet completely
forced cases, respectively. Note that the value of 0.54 for theelf-similar. Presumably it takes a while for the high levels
forced case is close to the value of 0.58 calculated from thef (u%) and(v?) present in the initial conditions to come into
approximate self-similar period in the DNS of Ref. 5, andcomplete equilibrium with the rest of the flow. For the cross-
significantly larger than the value of 0.21 quoted for thestream resolution used in this forced flow, the subgrid con-
“weakly forced” case of that work. tribution to (uv) is negligible and the collapse of the re-
The mean velocity profiles plotted in self-similar coordi- solved component of(uv) is good. In the unforced
nates for both the large-domain forced LES and the unforcedimulation described in Sec. IV the subgrid contribution to
LES are plotted in Fig. 10. For the forced flow the profiles{uv) decreased from 17% of the resolved amount at
are obtained from a sequence of approximately equispacetk 24.9 to 3.5% atr=125.0.
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FIG. 11. Reynolds stress profiles in self-similar coordinates for the LES of the forced wake in the large domain during the peria@0B(curves
generally decreasing in timeThe figures arga) (u?), (b) (v?), (c) (w?), and(d) (uv).

The scaled Reynolds stress profiles are not identical imodel. Comparison of growth rates, profiles of first- and
the forced and unforced cases as is evident by comparingecond-order statistics, and flow structures show good agree-
Fig. 11 and Fig. 4. First, there is a large difference in mag-ment with the DNS results. This, together with previous tests
nitude, with the levels in the forced case being up to an ordeof the subgrid model on other flows, gives us confidence in
of magnitude larger than those in the unforced flow. Secondhe method as an accurate and efficient tool for simulations
the form of the curves is different. The discrepancy cannobf unbounded turbulent flows.
be removed by a simple scaling factor, as can be seen from LES was performed for both unforced and forced wakes
the fact that the(u?) and (w?) profiles are not “double- and the hypothesis of universal self-similarity was examined
peaked” in the forced case. This is in agreement with then the light of the data from the simulations. It was found that
arguments of Geordeand contrary to what is expected in the although flow statistics from each simulated wake exhibited
classical theory? It is also in agreement with the experimen- self-similar behavior, the wake spreading rates depended on
tal results of Refs. 2 and 3. the initial conditions. This is in contrast to the classical

Since the Reynolds shear stress profile is related to thpicture* which assumes that all wakes with the same mo-
mean velocity profile, it can be shown that the(uv) pro-  mentum deficit asymptotically approach the same self-
file should be identical for allinviscid) wakes when scaled
with the quantity @&U,?)(u/bsU,,) instead of with
(8U)2. In Fig. 12 the Reynolds shear stréss ) has been
plotted with this new scaling. The collapse of the profiles for
the two flows is quite good once the high levels(af)) on
the lower side of the layer stop decreasingrat160. The
curves for the unforced case increase in time, partly owing to _
the decreasing fraction dfuv) that is associated with the -
“sub-grid” scales. By comparing Fig. 11 and Fig. 4 it is 1:
seen that the ratiouv)/ U2 is about four times larger in 2
the forced wake than in the unforced flow, so including the
layer growth rate in the scaling, as in Fig. 12, does remark-
ably well in bringing the profiles into agreement.

V1. DISCUSSION 027 1 0 i 2

Large-eddy simulations of temporally evolving wakes

were performed using the “dynamic localization” subgrid FiG. 12. Normalized Reynolds shear stress in self-similar coordinates for
the LES using DLM; — forced wake® unforced wake.
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