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Turbulent wakes are known to develop self-similarly sufficiently far downstream from obstacles that
generate them. It has long been assumed that the spreading rate of the wake in the self-similar
regime is independent of the details of the body generating the wake, being dependent only on the
total drag~or momentum deficit!. This assumption seems to be in contradiction with some recent
experiments. In this study we attempt to complement these experimental investigations through a
numerical study of a time-developing wake. A numerical study has the advantage of eliminating
many of the uncontrolled factors present in experiments and allowing precise control of initial
conditions. Large-eddy simulations employing the recently developed dynamic localization model
are used to extend previous results from direct numerical simulations. The large-eddy simulation
results are compared to the direct numerical simulation database, wherever such comparisons are
feasible, as a check of the method. Like the experiments, the large-eddy simulations suggest that
non-unique self-similar states, characterized by different spreading rates and turbulent statistics, are
possible and that they can be maintained for significant time periods. The study also demonstrates
the predictive capability of the dynamic localization subgrid model. ©1997 American Institute of
Physics.@S1070-6631~97!02006-0#
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I. INTRODUCTION

A turbulent flow is said to be self-similar when some
all of its statistical properties depend only on certain com
nations of the independent variables rather than on each
dependent variable individually. The consequence of thi
that the number of independent variables in the problem
reduced, thus greatly facilitating its solution. Geometrica
a self-similar flow possesses a certain symmetry; for exam
the flow pattern on any two cross sections perpendicular
given axis may be identical except for a scale factor. T
property of self-similarity has been used on many occasi
in fluid dynamics to derive elegant solutions to otherw
very difficult problems~such as the structure of turbule
boundary layers, jets and wakes!. Recently, George1 pre-
sented a critical analysis of the self-similarity argument
the context of certain apparent discrepancies of self-sim
solutions with experimental results on jets and wakes.
argued that in the traditional analysis, in addition to the
sumption of self-similarity, one often invokes additional r
strictions inspired by the dictum ‘‘turbulence forgets its in
tial conditions.’’ For example, in the case of the turbule
plane wake one requires that the growth rate sufficiently
from the source can depend only on the momentum defic
the wake~which is proportional to the drag on the obstac
producing the wake!. Dimensional analysis then implie
‘‘universal’’ solutions that do not depend on the nature of t
obstacle or the details of the initial conditions. George
gued that when such additional restrictions are removed,

a!Present address: LMFN-INSA Rouen, URA-CNRS 230-CORIA, 768
Mont-St-Aignan, France.
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obtains a wider class of self-similar solutions that are
longer ‘‘universal.’’ Thus, for a plane wake, these solutio
will depend on the nature of the obstacle and not just on
total drag. These conclusions seem to be in agreement
the experiments of Wygnanskiet al.2 and Marasliet al.3

However, conditions in experiments are difficult to contr
precisely and some doubt remains about whether the re
indicate the existence of multiple self-similar states or if th
is an artifact of experimental uncertainties.

To address this issue further, direct numerical simu
tions ~DNS! of plane wakes have been generated by Mo
and Rogers4 and Moser, Rogers, and Ewing.5 Such numeri-
cal simulations are free from various uncontrollable extra
ous factors that complicate the interpretation of experime
and should complement the experimental results alre
available~see Refs. 2 and 3, and references therein!. How-
ever, such simulations are very costly since all scales of
bulent motion must be accurately resolved. In practice t
limits the Reynolds numbers and the extent of flow evolut
that can be simulated. This suggests that large-eddy sim
tion ~LES! might be a better tool than direct numerical sim
lation to study high-Reynolds-number fully developed wa
turbulence over long evolution times, particularly if sma
scale information is not desired. In LES one explicitly solv
a coarse-grained version of the Navier–Stokes equati
The collective effect of the small scales on the large scale
taken into account through a ‘‘subgrid model.’’ Althoug
LES can be computationally much less expensive, it has
disadvantage that it leaves open the possibility of signific
errors resulting from the approximation of the unknown su
grid stress by a model.
1729$10.00 © 1997 American Institute of Physics
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In order to achieve the longest possible simulation o
high-Reynolds-number self-similar plane wake we have
sorted to LES of the temporally evolving flow, as was do
in the DNS. First, the LES methodology is validated by co
parison to existing DNS for cases that are less computat
ally intensive. The limitations of the DNS can then in turn
addressed by the use of new LES results in larger comp
tional domains. This complementary use of both LES a
DNS bolsters confidence in the simulation results and fac
tates better understanding of the self-similar behavior of
plane wake.

Three DNS of temporally evolving plane wakes ha
been documented in Moser, Rogers, and Ewing.5 These
wakes differ from each other in the level of initial two
dimensional turbulent fluctuations. The ‘‘unforced’’ case
initiated from two realizations of a fully developed turbule
boundary layer with no added disturbances. In the ot
‘‘weakly forced’’ and ‘‘strongly forced’’ cases, additiona
two-dimensional fluctuation energy has been added to
boundary layer turbulence. This is achieved by multiplyi
the streamwise and cross-stream velocity components a
ciated with the two-dimensional Fourier modes in the co
putation by factors of 5 and 20, respectively. The result
evolution of the unforced and weakly forced cases sho
convincing evidence of self-similar evolution, although t
growth rates and Reynolds stress levels for the two case
different. The strongly forced case, on the other hand, sh
irregularities in the shapes of mean velocity and Reyno
stress profiles and exhibits at most a short period of appr
mate self-similar evolution~with a very high growth rate and
large levels of Reynolds stress!.

The flow structure in this strongly forced case has
underlying pattern of a few large-scale motions and it w
speculated in Ref. 5 that the poor self-similarity result
from an inadequate sample of large-scale turbulent eddie
the computational domain. In order to confirm this, a LES
nominally the same flow in a domain that is twice as large
the streamwise direction and four times as large in the sp
wise direction has been generated and compared to
DNS and LES of the small-domain case. Of primary inter
is whether a self-similar state does indeed exist in t
strongly forced flow and what the growth rate and Reyno
stress levels are if such a period exists. This allows us
better address the issue of whether or not multiple init
condition-dependent self-similar states exist for the turbu
plane wake.

The LES is performed using a fully spectral code an
recently developed subgrid model known as the ‘‘dynam
localization model’’~DLM !. In a previous paper,6 the theo-
retical development leading to the dynamic localizati
model for large-eddy simulation was presented. The met
has been successfully applied to isotropic turbulence6,7

channel flow,8 and the flow over a backward-facing step.9,10

Two attractive features of this model are:

~1! The magnitude of the eddy viscosity does not need to
prescribed in anad hocmanner but the algorithm itsel
chooses an optimum value based on a certain w
defined optimization procedure.
1730 Phys. Fluids, Vol. 9, No. 6, June 1997
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~2! The subgrid model parameter~‘‘Smagorinsky coeffi-
cient’’! is a function of space and time and automatica
adjusts itself to the intensity of the turbulence. In pa
ticular, it goes to zero near walls and vanishes in tho
regions of space and time where the flow is laminar.

The present study, in addition to investigating the iss
of self-similarity in plane wakes, also provides another t
of the predictive capability of the dynamic localizatio
model. This includes both the ability to predict turbulent s
tistics as well as flow structure. In Moser, Rogers, a
Ewing,5 forcing was found to significantly affect both stati
tics and flow structure in the plane wake, with forcing i
creasing the level of organized large-scale motions in
flow. Since it seems that these differences in flow struct
are linked to the differences in turbulent statistics it may
essential that the subgrid model preserve the character o
filtered vorticity field for accurate prediction of the statistic
The local character of the subgrid model employed in t
work would seem to offer a greater likelihood of achievin
this. The level of correspondence between the vortex st
tures in the LES and the DNS is also of interest for flo
control and understanding mechanisms of turbulent mixin

In Sec. II certain general properties of plane wakes
reviewed and the problem to be solved numerically is
fined. In Sec. III the computational methods used, includ
the subgrid model, are briefly discussed. The LES results
the unforced wake are presented and compared with the D
database in Sec. IV. LES computations of the forced cas
two different domain sizes~the smaller for comparison to th
DNS, the larger to address limitations of the DNS and
study the long-time evolution of the forced case! are consid-
ered in Sec. V. In the concluding Sec. VI, the results a
their significance are discussed.

II. FORMULATION OF THE PROBLEM

In a temporally developing wake the flow is statistica
homogeneous in the streamwise (x) and spanwise (z) direc-
tions and inhomogeneous in the cross-stream (y) direction.
The governing equations are the incompressible Navi
Stokes equations with periodic boundary conditions inx and
z. In the y direction the domain is infinite and the velocit
field is assumed to asymptotically approach the free-stre
velocity, which can be taken as zero in a suitably chos
reference frame. This flow becomes equivalent to the ph
cally more relevant spatially developing wake in the limit
a small wake deficit. If one imagines a ‘‘box’’ being ad
vected downstream at the ‘‘free-stream’’ velocity in a sp
tially developing wake, then the motion of the fluid in th
imaginary box approximates a temporally developing wa
The integrated mass flux deficit

m52E
2`

1`

dU~y!dy ~1!

is conserved in a temporally developing wake, as oppose
the momentum flux deficit

m*52E
2`

1`

~U`1dU~y!!dU~y!dy, ~2!
S. Ghosal and M. M. Rogers
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which is conserved for a spatially developing wake. Clea
if the mean velocity deficitdU is small compared to the fre
stream velocityU` , thenm*'U`m. A suitable scale for the
velocity is the initial centerplane velocity defic
dU052(dU(0))t50 and a suitable length scale ism/dU0.
The associated time scale ism/(dU0)

2. Most of the results
given below are quoted in these units.

III. COMPUTATIONAL METHODS

The numerical method used is a spectral method in v
ticity variables. Both the velocity and vorticity are period
in thex andz directions and can therefore be expanded i
basis of trigonometric functions for these variables. They
direction is somewhat more difficult to deal with since t
domain is infinite iny. One method is to choose a basis
functions that have an infinite support~such as the Jacob
polynomials coupled with a mapping to the infinite interva!
for the y direction.11 However, here we use an artifice th
results in a simpler numerical code. We take advantage
the fact that in a wake the vorticity field is much more co
fined in the y direction than the velocity field. One the
expands the vorticity in a trigonometric series iny defined
over (ymin ,ymax) with periodic boundary conditions. This i
permissible provided that the vorticity is narrowly confin
aroundy50 and effectively decays to zero at the boundar
ymin and ymax. The velocity field is not so confined an
cannot be represented in terms of these trigonometric fu
tions. But once the vorticity field is determined, the corre
velocity field may be obtained by adding a potential ‘‘co
rection’’ to the periodic velocity field so as to match th
boundary conditions aty56`. Further details of the com
putational method may be found in Corral and Jimenez.12.

We use the ‘‘dynamic method’’ for computing the coe
ficientC(x,t) in the generalization of Smagorinsky’s subgr
model

t i j2
1
3 d i j tkk522C~x,t !D2uS̄uS̄i j , ~3!

where t i j is the subgrid stress,S̄i j is the resolved rate o
strain, uS̄u252S̄i j S̄i j , andD is the LES filter-width~taken
equal to the grid spacing!. We will consider two variants of
the dynamic method for determiningC. The first, the Dy-
namic Model~DM!, can be considered as a special case
the more general DLM discussed below for flows that
homogeneous in one or more directions. For the wake fl
the coefficientC is considered a function ofy and t only in
DM and is given by

C~y,t !5
^mi j Li j &xz
^mklmkl&xz

, ~4!

where the angular brackets denote averaging over the ho

geneousx-z planes. HereLi j5ūi ū jˆ 2 û̄i û̄ j is the Leonard

term andmi j5D2uS̄uS̄i j
ˆ

2D̂2u Ŝ̄u Ŝ̄i j , where ūi is the filtered
velocity and the ^ denotes the ‘‘test filtering’’ operation:

f̂ ~x!5E G~x,y! f ~y!dy. ~5!
Phys. Fluids, Vol. 9, No. 6, June 1997
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The ‘‘test-level’’ filter-width is D̂ ~D̂.D̂! andG(x,y) is the
test filter kernel.

The second method, DLM, is applicable to arbitrary h
mogeneous flows but imposes the constraintC>0. It is the
more general of the two but requires more computation. T
constraintC>0 can be relaxed. This is done either by intr
ducing an additional equation for the subgrid energy,k ~Ref.
6! or by adding a ‘‘stochastic backscatter’’ term7 In DLM
one obtainsC(x,t) as a function of position at each time-ste
by solving an integral equation

C~x!5F f ~x!1E K ~x,y!C~y!dyG
1

, ~6!

where the suffix ‘‘1 ’’ indicates the positive part and

f ~x!5
1

akl~x!akl~x!
Fa i j ~x!Li j ~x!

2b i j ~x!E Li j ~y!G~y,x!dyG , ~7!

K ~x,y!5
KA~x,y!1KA~y,x!2KS~x,y!

akl~x!akl~x!
, ~8!

KA~x,y!5a i j ~x!b i j ~y!G~x,y!, ~9!

and

KS~x,y!5b i j ~x!b i j ~y!E G~z,x!G~z,y!dz. ~10!

In these expressionsG(x,y) is the ‘‘test filter,’’

a i j522D̂2uS̄ˆ uS̄ˆ i j , b i j522D2uS̄uS̄i j , andLi j is the Leonard
term. The method of numerically solving the integral equ
tion to determine the coefficientC has been describe
elsewhere.6 The test filter-width in these computations w
taken to be twice the grid-filter width,D̂52D, and a ‘‘top-
hat’’ filter was used with a Simpson’s rule quadrature.

IV. VALIDATION OF THE LES FOR THE UNFORCED
WAKE

In this section we attempt to establish confidence in
predictive capability of the subgrid model by reproducin
using LES, the results for the ‘‘unforced’’ plane wake ge
erated by DNS in Moser and Rogers4 and Moser, Rogers
and Ewing.5 The initial conditions for the DNS were gene
ated by taking two realizations of ‘‘turbulence over a fl
plate’’ from DNS data generated by Spalart13 and ‘‘fusing’’
them together to produce a wake. Physically this correspo
to a situation in which two independent boundary layers e
on either side of a rigid plate and the plate is instantaneou
‘‘dissolved’’ without disturbing the surrounding fluid. Thi
initial DNS data field was then interpolated onto the coar
LES grid to generate the initial conditions for the LES. A
the parameters in the LES described in this section w
chosen to correspond to those used in the DNS.

The LES reported here were performed on a grid of s
Nx564,Ny548, andNz516. By contrast the DNS require
up toNx5512,Ny5195, andNz5128 modes. The half-size
of the y-domain was set toY0516. To compare the LES
results to the DNS, all DNS data must first be ‘‘filtered’’ t
1731S. Ghosal and M. M. Rogers
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the same resolution as the LES. This is done by trunca
the DNS data in Fourier space to the same number of mo
retained in the LES for thex and z directions. For they
direction, the DNS data are interpolated onto the coa
LES grid. This filtering procedure is applied to the initi
conditions as well as to all DNS data with which we wish
compare the LES results. The ‘‘filtered DNS’’ represents
theoretical best that can be achieved by any LES. Since
mean velocity is given by thekx5kz50 Fourier-mode, the
mean profile is unaffected by filtering inx-z planes. Also,
since the mean profile varies very little over a single gr
length, filtering in they direction does not have any obser
able effect on the mean velocity. This, however, is not
case for second-order statistics of velocity and vorticity a
there explicit filtering must be applied to the DNS data
comparison with the LES. The LES with DM took abo
11 minutes of CPU time for the entire simulation to be co
pleted. For the DLM the CPU time depended on the leve
convergence required for the solution of the integral eq
tion. We measured the degree of convergence by the
error in satisfying the integral equation normalized by t
maximum value of̂ C&, where^& denote averaging overx-
z planes. When it was required that the error as defi
above should not exceed 1024, the DLM used about 18 min
utes of CPU time. To test if this level of convergence w
adequate, the simulation was rerun with the convergence
terion set at 1029. There were no observable differences
any of the computed statistics. For comparison, the h
resolution DNS of the same flow over the same physical t
interval by Moser and Rogers4 required about 200 CPU
hours. All computations were performed on a CRAY C90

The gross features of the wake are characterized by
maximum wake deficitdUm of the mean velocity profile and
the wake half-widthb. The half-width is defined here as th
distance between the two points at which the mean velo
deficit is half its maximum value. Figure 1 showsb2 plotted
as a function of the dimensionless timet5t(dU0)

2/m for
the LES using both the DM and DLM models, the filtere
DNS, and the LES with the subgrid model turned off. T
width grows as b;At in the self-similar region
(t'50–100) as expected. Figure 2 shows the prod

FIG. 1. The square of the wake width as a function of time using DLM
DM---; No-model• • • •; filtered DNSd.
1732 Phys. Fluids, Vol. 9, No. 6, June 1997
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b(dUm) as a function oft. All curves exhibit plateaus dur
ing the self-similar periods. Note that the Reynolds num
Reb5bdUm /n is constant and just under 2000 in the se
similar period becausem/n52000. The results of all the LES
computations agree reasonably well with the filtered DNS
somewhat surprising result is that even the LES with z
eddy viscosity gives a reasonable prediction for the spre
ing rate despite the simulation being grossly underresolv
Flow visualization of the instantaneous flow field and plo
of energy spectra show large accumulations of small-sc
fluctuations at the smallest resolved scales for this ‘‘n
model’’ case, as is expected in an underresolved simulat
However, even this gross error does not affect the gro
rate much except to make it more ‘‘wiggly.’’ This is in shar
contrast to past experience in isotropic turbulence. In t
flow, the absence of an eddy-viscosity would prevent ene
decay of free turbulence and make a steady state impos
in forced turbulence, rendering comparisons with expe
ments impossible.

Figure 3 shows the mean velocity profile plotted in se

; FIG. 2. The product of the wake width and the maximum velocity deficit
a function of time using DLM —; DM---; No-model• • • •; filtered DNS
d.

FIG. 3. The mean wake velocity deficit in self-similar coordinates us
DLM —; DM---; No-model • • • •; filtered DNSd.
S. Ghosal and M. M. Rogers
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FIG. 4. Normalized velocity statistics in self-similar coordinates using DLM —; DM---; No-model• • • •; filtered DNSd. The figures are~a! ^u2&, ~b!
^v2&, ~c! ^w2&, and~d! ^uv&, and all curves shown are from the ‘‘self-similar period’’ of each computation.
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similar coordinates dU*5dU/dUm and y*5y/b for
t'50–100. In all cases very good self-similar collapse
observed~even with the subgrid model turned off!. Thus,
like the growth rate, the mean velocity profile is quite inse
sitive to the subgrid model.

The second-order velocity statistics^u2&, ^v2&, ^w2&,
and^uv& normalized by (dUm)

2 are shown for several time
during the ‘‘self-similar period’’ in Fig. 4. Hereu, v, and
w are the velocities in thex, y, andz directions, respectively
with the mean velocity subtracted out. The angular brack
denote averaging overx-z planes. In all cases it is observe
that both the DM and the DLM predict the filtered secon
order statistics well. Except for thêuv& profile, the quality
of the predictions deteriorates if the model is turned off. T
better agreement for thêuv& profile is expected since it is
directly linked to the mean velocity profiledU(y) through
the x-component of the momentum equation and it has
ready been seen thatdU(y) is insensitive to the subgrid
model.

The second-order vorticity statistics^vx
2&, ^vy

2&, ^vz
2&,

and ^vxvy& normalized by Reb dUm
2 are shown in Fig. 5,

also at times during the ‘‘self-similar period.’’ Herevx ,
vy , andvz are the vorticities in thex, y, andz directions,
respectively, with the mean vorticity subtracted out. As b
Phys. Fluids, Vol. 9, No. 6, June 1997
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fore, the angular brackets denote averaging overx-z planes.
The agreement of both the DM and the DLM predictio
with the filtered DNS is seen to be good. The quality of t
predictions is significantly degraded when the model
turned off, in which case the magnitudes of the enstrop
components are about four or five times the correspond
filtered DNS levels. Vorticity statistics are a sensitive me
sure of the scales close to the threshold of the resolutio
the LES. The fact that even vorticity statistics are captu
by the LES suggests that all of the resolved scales, and
just the lowest wave number modes, are faithfully rep
sented in the simulation. Thus, we use vorticity statistics a
‘‘quality indicator’’ of the LES rather than as a quantity o
practical importance~note that much of the vorticity reside
at subgrid scales and the levels found in the LES or filte
DNS are much less than those observed in the DNS!.

In Figs. 4 and 5 it is apparent that the self-similar co
lapse is not perfect but that there is a systematic varia
between the curves at different times in the simulation, e
when scaled in self-similar variables. This is the case
only for the LES, but also for the filtered DNS. This is a
artifact of the filtering procedure itself and can be understo
in the following way. The flow evolves self-similarly at con
stant Reynolds number Reb5b(dUm)/n ~see Fig. 2! in the
1733S. Ghosal and M. M. Rogers
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FIG. 5. Vorticity statistics in self-similar coordinates using DLM —; DM---; No-model• • • •; filtered DNSd. The figures are~a! ^vx
2&, ~b! ^vy

2&, ~c!
^vz

2&, and~d! ^vxvy&, and all curves shown are from the ‘‘self-similar period’’ of each computation.
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self-similar region but the length scales increase in tim
Thus, as the flow evolves, the energy spectrum shifts to
left. Since the grid size is held fixed, this implies that mo
and more of the energy becomes ‘‘resolved’’ as the spect
shifts to lower wave numbers pastk̄52p/D. Therefore the
resolved part of the second-order statistics increases
time. This is precisely what is observed in the LES and
tered DNS data and is responsible for the systematic incr
ing trend during the self-similar period. The problem he
could be remedied by adding the subgrid part of the str
that is by plottinĝ uv&1t12 instead of̂ uv&. This cannot be
done, however, for the turbulent intensities^u2&, ^v2&, and
^w2& because the diagonal components of the subgrid st
t11, t22, and t33 are absorbed into the pressure and
modeled in the present LES. They could be obtained i
more elaborate model such as the DLM with t
k-equation6 but in this study we have used the simpler ve
sion of the DLM that models only the deviatoric part of th
stress.

In addition to obtaining quantitative predictions, one a
hopes to gain some qualitative understanding of the la
scale flow structures from an LES. Thus, it is of interest
see if the model is able to generate structures that look r
istic. As an example, typical contour plots of theu-velocity
1734 Phys. Fluids, Vol. 9, No. 6, June 1997
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at a time during the self-similar period are presented in F
6 over anx-y plane. It is seen that Fig. 6~c! and Fig. 6~d!
~LES with model! bear an overall resemblance to Fig. 6~b!
~filtered DNS! in the sense that they have a similar numb
of ‘‘eddies’’ of approximately similar size and shape. How
ever, Fig. 6~e! ~LES without model! looks qualitatively dif-
ferent from Fig. 6~b! in that it has a profusion of poorly
resolved small-scale structures. A similar statement can
made about the other flow variables.

In summary, mean normalized velocity profiles plott
in self-similar coordinates are insensitive to the choice
subgrid models. The prediction of the self-similar growth
the wake width is improved by the subgrid model, but t
results with no model are nevertheless good. Second-o
velocity and vorticity statistics are predicted well by both t
DM and DLM, but the predictions of these statistics witho
a model are poor. The flow structures in the LES have
strong visual resemblance to those of the corresponding
tered DNS, but this is not the case if the LES is perform
with no subgrid model. The LES results in a very significa
savings in CPU time over the corresponding DNS. The
sults presented here suggest that LES can provide acc
predictions for turbulent free shear flows when informati
related to small-scale structures is not required.
S. Ghosal and M. M. Rogers

to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp



a
th
e
ly
d
e
in
he
th
io
at

’’
a
di
.
-
pl
th

ross-

20
al
tial
en-

g to
M.
he

he
of

re

to
by

de-
sus-
od
S
the

he
ture

d-
hat
ite
me

ed
V. AN ALTERNATE SELF-SIMILAR STATE RESULTING
FROM FORCING

In this section we investigate the time evolution of
‘‘forced’’ wake that has the same mass flux deficit as
‘‘unforced’’ wake in the previous section. Using LES, w
first attempt to reproduce the DNS results for the ‘‘strong
forced’’ wake of Moser and Rogers4 and Moser, Rogers, an
Ewing.5 Next we attempt to extend the DNS results in tim
with a new LES simulation in a larger computational doma
in an effort to observe a definitive self-similar regime. In t
DNS no sustained self-similar period was achieved for
strongly forced wake, although there was a fairly brief per
of approximate self-similarity that was used to gener
time-averaged similarity profiles.

The initial conditions used in the DNS of the ‘‘forced
wake were generated from the same two turbulent bound
layer realizations used for the unforced flow, but with ad
tional two-dimensional disturbance energy added to them
order to maintain a t1/2 spreading rate, all the two
dimensional Fourier modes in the computation were am
fied instead of just a few particular wavelengths. For

FIG. 6. Contour plots of streamwise velocity fluctuationu for ~a! DNS, ~b!
filtered DNS, ~c! DLM LES, ~d! DM LES, and ~e! no-model LES at
t571.7. Tick marks are at 2m/dU0.
Phys. Fluids, Vol. 9, No. 6, June 1997
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forced case considered here, both the streamwise and c
stream velocity fluctuations (u8 and v8) of the two-
dimensional Fourier modes were multiplied by a factor of
at t50. This amplification is large, increasing the initi
disturbance energy by an order of magnitude. The ini
conditions for the corresponding LES computation were g
erated by filtering the evolved DNS field att59.56. This
field was chosen rather than that att50.0 to allow the initial
cusped mean profile to smooth out somewhat before tryin
resolve it on the LES grid. The subgrid model used is DL
Although this is computationally more expensive than t
DM, it is preferred because of its wider applicability.

A. Reproducing the DNS results

The square of the wake width as a function of time in t
DLM LES is shown by the dashed line in Fig. 7. The size
the LES isNx564, Ny564 or 96,Nz516, andY0 ranges
from 14.0 initially to 64.0 at the end of the simulation, whe
Nx , Ny , andNz are the number of modes in thex, y, and
z directions, respectively, andY0 is the half-width of the
y-domain. ~The DNS uses up toNx5600, Ny5260, and
Nz5160.! The LES results agree well with the DNS up
the point where both computations become constrained
the computational domain size. Aftert'65 both the DNS
and the LES computed in the same domain size exhibit
creasing wake widths instead of reaching the expected
tained self-similar growth. The LES is also no longer as go
at predicting the wake width after this point, with the LE
width decreasing somewhat more rapidly than that of
DNS.

As with the unforced case, contours ofu velocity show
good agreement between the LES@Fig. 8~c!# and the filtered
DNS @Fig. 8~b!#. When no subgrid scale model is used t
computation has an excessive level of small-scale struc
owing to inadequate energy dissipation@Fig. 8~d!#. Note that
at the time shown (t526.3), the sample of large-scale e
dies in the computational domain is becoming somew
limited. As the wake continues to spread it is thus qu
probable that the computational domain size will beco

FIG. 7. The square of the wake width as a function of time for the forc
wake:d DNS, --- DLM LES, • • • • no-model LES, — DLM LES of the
forced wake extended to the larger domain~upper curve!, and — DLM LES
of the unforced wake~lower curve!.
1735S. Ghosal and M. M. Rogers
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inadequate and the simulation will no longer be a good r
resentation of an unbounded turbulent flow.

In order to demonstrate that the turbulence in these
computations is constrained by the computational dom
size ~rather than simply being in a transient non-self-simi
state!, another LES computation in a domain with twice t
streamwise extent and four times the spanwise extent of
computations described above was performed. It should
noted that performing a DNS in this expanded domain siz
unfeasible with the computational capabilities curren
available.

B. Extending the DNS results to a larger flow domain

Generating the initial conditions for the expande
domain computation requires some care. Ideally we wo
like to be simulating the same flow, but simply replicatin
the periodic flow field used previously will not change t
flow evolution at all since the initial periodic symmetry wi
be maintained by the Navier–Stokes equations. It is t
necessary to break this symmetry in the periodically
tended initial conditions. Considering the streamwise dir
tion, if the initial computational wave numbers are scaled

FIG. 8. Contour plots of streamwise velocity fluctuationu for ~a! DNS, ~b!
filtered DNS,~c! DLM LES, and~d! no-model LES for the forced wake in
the smaller domain att526.3. Tick marks are at 2m/dU0, solid contours
are positive, dotted contours are negative, and the contour leve
0.10dU0.
1736 Phys. Fluids, Vol. 9, No. 6, June 1997
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be integers, then the periodic doubling of the streamw
direction will introduce new wave numbers that are odd m
tiples of one half; these wave numbers have zero energy
break the initial periodic symmetry these Fourier mod
must be seeded with some energy. While adding energ
any single one of the wave numbers would break the sy
metry, the time required for nonlinear interactions to trans
energy to the rest of them would be long and the size of
large-scale motions would approach the size of the com
tational domain before the spectra smoothed out. In orde
minimize this transient development time we have chosen
initialize energy in nearly all of the newly generated wa
numbers. This has been accomplished by simply taking
disturbance energy in wave numberkx and putting the same
energy~randomizing the phase of the disturbance! in the new
wave numberkx1

1
2. The only exception is thekx5

1
2 wave

number, which does not initially receive any energy from t
kx50 mode. After this, the entire field is rescaled to have
same disturbance energy density as the original computa
The same procedure is used in the spanwise direction
though since the domain is four times as large, the conten
kz is propagated tokz1

1
4 , kz1

1
2, andkz1

3
4 ~again with ran-

domized phase for each new mode!.
The initial flow field generated by the above procedure

thus unphysical, unlike the initial field used for the origin
computations, which were generated from DNS of a turb
lent boundary layer. However, it is hoped that this flow w
be similar to the previous computation since the initial e
ergy spectra, mean profiles, relative importance of tw
dimensional disturbances, and other features are the s
between the two flows~the mean velocity profiles are iden
tical!. The correspondence between the results from this n
simulation and the previous forced simulations up tot'35
provides some evidence that this is indeed the case~see, for
example, Fig. 7!.

As with the original forced LES calculation, the initia
field for the large-domain LES computation was genera
~using the above procedure! from the DNS field att59.56.
The large-domain LES was begun withNx5128, Ny564,
Nz564, and Y0514. The y-domain is periodically re-
meshed, increasing bothY0 andNy in such a way as to keep
they-resolution approximately constant. The choice ofY0 at
each remesh is such that it is large enough to contain all
vorticity in the flow but not so large that CPU time is wast
computing regions of little activity.

The evolution of the square of the wake width for th
LES in the extended domain is shown in Fig. 7. It sho
significant deviation from the previous computation beyo
t'35 and achieves a sustained period of linear growth,
like the forced case in the small domain. It is interesting
note that the growth rate during this apparently self-sim
period in the large-domain case is about the same as
during the brief approximately self-similar period of th
original LES and DNS computations, although the ‘‘virtu
origins’’ of the flows are different~i.e. the width curves are
parallel but shifted vertically relative to each other in Fig. 7!.
This difference in virtual origins of the flows is presumably
consequence of the initialization procedure. Because
large-domain computation does achieve a sustained lin

is
S. Ghosal and M. M. Rogers
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growth period of the squared wake width, it is likely that t
previous computations were indeed constrained by the
of the computational domain byt'65 if not sooner.

The product of the wake width and centerline veloc
deficit for the large-domain LES is plotted along with th
previous LES and DNS results in Fig. 9. The product is qu
constant beyondt'50, consistent with self-similar evolu
tion. In the original LES and the DNS the product is not
constant.

It should be noted that although the large-domain forc
LES and the unforced LES both exhibit sustained periods
apparent self-similar evolution, these self-similar periods
characterized by markedly different growth rates. The co
putations are thus indeed supportive of the idea that alte
tive initial condition-dependent, self-similar states are p
sible as suggested by the analysis of George1 and the
experiments of Wygnanskiet al.2 and Marasliet al.3 Two-
dimensional forcing is seen to result in a sustained signific
increase in wake growth rate. The linear region in Fig. 7
well approximated by

b2~dU0!
2

m2 5a
~dU0!

2

m
~ t2t0!, ~11!

wherea50.26,t053.1 in the unforced case buta51.02 and
t0525.9 in the forced case. The dimensionless growth r
b used in Moser, Rogers, and Ewing5 can be calculated from
a by

b5
a

2

m

b~dUm!
, ~12!

resulting in b50.13 andb50.54 for the unforced and
forced cases, respectively. Note that the value of 0.54 for
forced case is close to the value of 0.58 calculated from
approximate self-similar period in the DNS of Ref. 5, a
significantly larger than the value of 0.21 quoted for t
‘‘weakly forced’’ case of that work.

The mean velocity profiles plotted in self-similar coord
nates for both the large-domain forced LES and the unfor
LES are plotted in Fig. 10. For the forced flow the profil
are obtained from a sequence of approximately equispa

FIG. 9. The product of the wake width and the maximum velocity deficit
a function of time:d DNS, --- DLM LES, • • • • no-model LES, — DLM
LES of the forced wake extended to the larger domain~long curve!, and —
LES of the unforced wake using DLM~short curve!.
Phys. Fluids, Vol. 9, No. 6, June 1997
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times during the period 73,t,300. The circles for the un-
forced case are taken from three times during the self-sim
period. It is seen that the velocity profiles at different tim
for the forced case collapse onto a single curve as they do
the unforced flow examined previously. Furthermore, ev
though the forced wake has a significantly different grow
rate, the mean velocity profile~when plotted in self-similar
coordinates! has the same form as the corresponding pro
from the unforced case. There is, however, a small late
shift in the forced mean profile relative to the unforced ca
that results from a shift present in the initial conditions~and
maintained by the Navier–Stokes equations!. This comes
about as a result of the initialization procedure used, wh
involves large amplification of particular modes and th
propagation to nearby uninitialized Fourier modes. This u
versality of the mean velocity profile shape is consistent w
the experiments2,3 and the arguments by George,1 as dis-
cussed in Sec. I.

The linear growth of the squared wake width in Fig.
appears to begin att'75 and continue untilt'220, after
which the growth rate appears to increase further. The
lapse of the scaled mean velocity profiles is good through
this period and it thus appears that the flow may be evolv
self-similarly during this period. Reynolds stress profiles
times varying fromt573 to t5300 in the large-domain
forced LES computation are shown in Fig. 11. The differe
curves correspond to the same times used in Fig. 10.
though the collapse of the curves is greatly improved
using the self-similar scalings, the^u2&, ^v2&, and lower half
of the^uv& profiles show a systematic decrease in magnitu
until about t'220, when the growth rate appears to
changing. This suggests that the flow is not yet complet
self-similar. Presumably it takes a while for the high leve
of ^u2& and^v2& present in the initial conditions to come int
complete equilibrium with the rest of the flow. For the cros
stream resolution used in this forced flow, the subgrid c
tribution to ^uv& is negligible and the collapse of the re
solved component of^uv& is good. In the unforced
simulation described in Sec. IV the subgrid contribution
^uv& decreased from 17% of the resolved amount
t524.9 to 3.5% att5125.0.

sFIG. 10. The mean wake velocity deficit in self-similar coordinates for
the forced ~large-domain! LES at various times during the perio
73,t,300 and ford the unforced flow att562, 72, and 86.
1737S. Ghosal and M. M. Rogers
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FIG. 11. Reynolds stress profiles in self-similar coordinates for the LES of the forced wake in the large domain during the period 73,t,300 ~curves
generally decreasing in time!. The figures are~a! ^u2&, ~b! ^v2&, ~c! ^w2&, and~d! ^uv&.
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The scaled Reynolds stress profiles are not identica
the forced and unforced cases as is evident by compa
Fig. 11 and Fig. 4. First, there is a large difference in m
nitude, with the levels in the forced case being up to an or
of magnitude larger than those in the unforced flow. Seco
the form of the curves is different. The discrepancy can
be removed by a simple scaling factor, as can be seen f
the fact that thê u2& and ^w2& profiles are not ‘‘double-
peaked’’ in the forced case. This is in agreement with
arguments of George1 and contrary to what is expected in th
classical theory.14 It is also in agreement with the experime
tal results of Refs. 2 and 3.

Since the Reynolds shear stress profile is related to
mean velocity profile, it can be shown,4,5 that the^uv& pro-
file should be identical for all~inviscid! wakes when scaled
with the quantity (adUm

2)(m/bdUm) instead of with
(dUm)

2. In Fig. 12 the Reynolds shear stress^uv& has been
plotted with this new scaling. The collapse of the profiles
the two flows is quite good once the high levels of^uv& on
the lower side of the layer stop decreasing att'160. The
curves for the unforced case increase in time, partly owin
the decreasing fraction of̂uv& that is associated with th
‘‘sub-grid’’ scales. By comparing Fig. 11 and Fig. 4 it
seen that the ratiôuv&/dUm

2 is about four times larger in
the forced wake than in the unforced flow, so including t
layer growth rate in the scaling, as in Fig. 12, does rema
ably well in bringing the profiles into agreement.

VI. DISCUSSION

Large-eddy simulations of temporally evolving wak
were performed using the ‘‘dynamic localization’’ subgr
1738 Phys. Fluids, Vol. 9, No. 6, June 1997
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model. Comparison of growth rates, profiles of first- a
second-order statistics, and flow structures show good ag
ment with the DNS results. This, together with previous te
of the subgrid model on other flows, gives us confidence
the method as an accurate and efficient tool for simulati
of unbounded turbulent flows.

LES was performed for both unforced and forced wak
and the hypothesis of universal self-similarity was examin
in the light of the data from the simulations. It was found th
although flow statistics from each simulated wake exhibi
self-similar behavior, the wake spreading rates depended
the initial conditions. This is in contrast to the classic
picture,14 which assumes that all wakes with the same m
mentum deficit asymptotically approach the same s

FIG. 12. Normalized Reynolds shear stress in self-similar coordinates
the LES using DLM; — forced wake,d unforced wake.
S. Ghosal and M. M. Rogers
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similar state. The results of this investigation support
theoretical arguments of George1 for the existence of ‘‘mul-
tiple self-similar states’’ and the experimental results
Wygnanskiet al.,2 Marasliet al.,3 and others. The numerica
and experimental work complement each other well since
inherent strengths and weaknesses of the two approache
different. An agreement between the two approaches
vides a strong indication that the observed effect is ind
real.

Strictly speaking asymptotic results are exact only a
the flow has evolved for an infinitely long time. Numeric
simulations can only be run for a limited time period and t
makes statements about asymptotic states based on sim
tion results somewhat tentative; we can really only specu
on the plausibility of different proposed asymptotic stat
There is no guarantee that if the flow evolved long enoug
would not reach the ‘‘classical self-similar state.’’ Howeve
even if this were the case, the present results show that t
exists at least a significant intermediate period during wh
there is self-similar evolution with growth rates dependi
on initial conditions, as predicted by the analysis of Georg1
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